国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (6): 632-638.doi: 10.7518/gjkq.2023094

• 口颌面发育专栏 • 上一篇    下一篇

维生素与唇腭裂发生相关性的研究进展

夏溦瑶1(),贾仲林2()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医学院 成都 610041
    2.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院唇腭裂外科 成都 610041
  • 收稿日期:2023-03-05 修回日期:2023-08-02 出版日期:2023-11-01 发布日期:2023-10-24
  • 通讯作者: 贾仲林
  • 作者简介:夏溦瑶,硕士,Email:xwy20000615@163.com
  • 基金资助:
    国家自然科学基金面上项目(82170919)

Research progress on the relationship between vitamin and oral clefts

Xia Weiyao1(),Jia Zhonglin2()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Disea-ses & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-03-05 Revised:2023-08-02 Online:2023-11-01 Published:2023-10-24
  • Contact: Zhonglin Jia
  • Supported by:
    National Natural Science Foundation of China General Program(82170919)

摘要:

维生素与唇腭裂发生之间的关系一直受到高度关注,已有大量研究探索维生素对唇腭裂发病机制的影响。维生素可以参与腭形成的调控、影响骨和软骨的发育、改变甲基化水平或在暴露于致畸物时发挥保护作用。母体维生素水平与唇腭裂的发生密切相关,孕期补充复合维生素可以预防或减轻唇腭裂的发生。本文就维生素与唇腭裂发生的关系及其影响机制的研究进展进行综述,为孕期合理补充维生素,预防和减少唇腭裂的发生提供依据。

关键词: 唇腭裂, 维生素, 发病机制

Abstract:

The relationship between vitamins and oral clefts has been a great concern.In recent years, researchers have explored the effects of vitamins on the pathogenesis of oral clefts. Vitamins may regulate palate formation, influence bone and cartilage development, alter methylation levels, or play a protective role during exposure to teratogens. Maternal vitamin levels are strongly associated with the development of oral clefts, and multivitamin supplementation during pregnancy may prevent or mitigate the development of the disease. This article provides a review of the research progress on the relationship between vitamin and oral clefts and the underlying mechanism. Results provide a basis for reasonable vitamin supplementation during pregnancy to prevent and reduce the occurrence of oral clefts.

Key words: oral cleft, vitamin, pathogenesis

中图分类号: 

  • R 782.2
1 殷斌, 石冰, 贾仲林. PRDM16基因及母亲孕期环境暴露因素与非综合征型唇腭裂相关性研究[J]. 华西口腔医学杂志, 2018, 36(5): 503-507.
Yin B, Shi B, Jia ZL. Associations among PRDM16 polymorphisms, environment exposure factors du-ring mother’s pregnancy, and nonsyndromic cleft lip with or without cleft palate[J]. West China J Stomatol, 2018, 36(5): 503-507.
2 Gadgil MD, Chang HY, Richards TM, et al. Laboratory testing for and diagnosis of nutritional deficiencies in pregnancy before and after bariatric surgery[J]. J Womens Health (Larchmt), 2014, 23(2): 129-137.
3 Alade A, Ismail W, Nair R, et al. Periconceptional use of vitamin A and the risk of giving birth to a child with nonsyndromic orofacial clefts-a meta-analysis[J]. Birth Defects Res, 2022, 114(10): 467-477.
4 Scheller K, Röckl T, Scheller C, et al. Lower concentrations of B-vitamin subgroups in the serum and amniotic fluid correlate to cleft lip and palate appearance in the offspring of A/WySn mice[J]. J Oral Maxillofac Surg, 2013, 71(9): 1601.e1-1601.e7.
5 Jahanbin A, Shadkam E, Miri HH, et al. Maternal folic acid supplementation and the risk of oral clefts in offspring[J]. J Craniofac Surg, 2018, 29(6): e534-e541.
6 Munger RG, Kuppuswamy R, Murthy J, et al. Maternal vitamin B12 status and risk of cleft lip and cleft palate birth defects in Tamil Nadu state, India[J]. Cleft Palate Craniofac J, 2021, 58(5): 567-576.
7 Krapels IP, van Rooij IA, Ocké MC, et al. Maternal nutritional status and the risk for orofacial cleft offspring in humans[J]. J Nutr, 2004, 134(11): 3106-3113.
8 Bastos Maia S, Rolland Souza AS, Costa Caminha MF, et al. Vitamin A and pregnancy: a narrative review[J]. Nutrients, 2019, 11(3): 681.
9 Zhang HH, Liu XZ, Gao Z, et al. Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling[J]. Anim Cells Syst (Seoul), 2017, 21(1): 31-36.
10 Shinde MU, Vuong AM, Brender JD, et al. Prenatal exposure to nitrosatable drugs, vitamin C, and risk of selected birth defects[J]. Birth Defects Res A Clin Mol Teratol, 2013, 97(8): 515-531.
11 Shorey-Kendrick LE, McEvoy CT, Ferguson B, et al. Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy[J]. Am J Respir Crit Care Med, 2017, 196(6): 745-755.
12 Chung MK, Lao TT, Ting YH, et al. Is there seaso-nality in the incidence of oral-facial clefts[J]. J Matern Fetal Neonatal Med, 2011. doi:10.3109/14767058.2011.629251 .
doi: 10.3109/14767058.2011.629251
13 Johansen AM, Lie RT, Wilcox AJ, et al. Maternal dietary intake of vitamin A and risk of orofacial clefts: a population-based case-control study in Norway[J]. Am J Epidemiol, 2008, 167(10): 1164-1170.
14 Finnell RH, Shaw GM, Lammer EJ, et al. Gene-nutrient interactions: importance of folates and retinoids during early embryogenesis[J]. Toxicol Appl Pharmacol, 2004, 198(2): 75-85.
15 李精韬, 石冰. 维生素A族与唇腭裂发生关系的研究进展[J]. 国际口腔医学杂志, 2012, 39(3): 346-348.
Li JT, Shi B. Research progress on relationship between vitamin A and oral clefts[J]. Int J Stomatol, 2012, 39(3): 346-348.
16 Liu XZ, Qi JJ, Tao YC, et al. Correlation of prolife-ration, TGF-β3 promoter methylation, and Smad signaling in MEPM cells during the development of ATRA-induced cleft palate[J]. Reprod Toxicol, 2016, 61: 1-9.
17 Yao Z, Chen D, Wang A, et al. Folic acid rescue of ATRA-induced cleft palate by restoring the TGF-β signal and inhibiting apoptosis[J]. J Oral Pathol Med, 2011, 40(5): 433-439.
18 Reynolds K, Kumari P, Sepulveda Rincon L, et al. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models[J]. Dis Model Mech, 2019, 12(2): dmm037051.
19 Hu X, Gao J, Liao Y, et al. Retinoic acid alters the proliferation and survival of the epithelium and me-senchyme and suppresses Wnt/β-catenin signaling in developing cleft palate[J]. Cell Death Dis, 2013, 4(10): e898.
20 Krutzen CLJM, Roa LA, Bloemen M, et al. Excess vitamin a might contribute to submucous clefting by inhibiting WNT-mediated bone formation[J]. Orthod Craniofac Res, 2023, 26(1): 132-139.
21 Chen M, Huang HZ, Wang M, et al. Retinoic acid inhibits osteogenic differentiation of mouse embryo-nic palate mesenchymal cells[J]. Birth Defects Res A Clin Mol Teratol, 2010, 88(11): 965-970.
22 Guo L, Zhao YY, Zhang SL, et al. Retinoic acid down-regulates bone morphogenetic protein 7 expression in rat with cleft palate[J]. Chin Med Sci J, 2008, 23(1): 28-31.
23 Zhang YD, Dong SY, Huang HZ. Inhibition of periderm removal in all-trans retinoic acid-induced cleft palate in mice[J]. Exp Ther Med, 2017, 14(4): 3393-3398.
24 Abbott BD, Best DS, Narotsky MG. Teratogenic effects of retinoic acid are modulated in mice lacking expression of epidermal growth factor and transforming growth factor-alpha[J]. Birth Defects Res A Clin Mol Teratol, 2005, 73(4): 204-217.
25 Wahl SE, Wyatt BH, Turner SD, et al. Transcriptome analysis of Xenopus orofacial tissues deficient in retinoic acid receptor function[J]. BMC Geno-mics, 2018, 19(1): 795.
26 Scheller K, Quitzke V, Kappler M. New molecular aspects in the mechanism of oromaxillofacial cleft prevention by B-vitamins[J]. J Craniomaxillofac Surg, 2018, 46(12): 2058-2062.
27 Scheller K, Kalmring F, Schubert J. Sex distribution is a factor in teratogenically induced clefts and in the anti-teratogenic effect of thiamine in mice, but not in genetically determined cleft appearance[J]. J Craniomaxillofac Surg, 2016, 44(2): 104-109.
28 Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M, et al. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights[J]. Brain, 2019, 142(3): 542-559.
29 Munger RG, Sauberlich HE, Corcoran C, et al. Maternal vitamin B-6 and folate status and risk of oral cleft birth defects in the Philippines[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70(7): 464-471.
30 Munger RG, Tamura T, Johnston KE, et al. Oral clefts and maternal biomarkers of folate-dependent one-carbon metabolism in Utah[J]. Birth Defects Res A Clin Mol Teratol, 2011, 91(3): 153-161.
31 Verhoef P, Pasman WJ, van Vliet T, et al. Contribution of caffeine to the homocysteine-raising effect of coffee: a randomized controlled trial in humans[J]. Am J Clin Nutr, 2002, 76(6): 1244-1248.
32 Yoneda T, Pratt RM. Vitamin B6 reduces cortisone-induced cleft palate in the mouse[J]. Teratology, 1982, 26(3): 255-258.
33 Blanco R, Colombo A, Pardo R, et al. Maternal biomarkers of methylation status and non-syndromic orofacial cleft risk: a meta-analysis[J]. Int J Oral Maxillofac Surg, 2016, 45(11): 1323-1332.
34 Xu WL, Yi L, Deng CF, et al. Maternal periconceptional folic acid supplementation reduced risks of non-syndromic oral clefts in offspring[J]. Sci Rep, 2021, 11(1): 12316.
35 Silva C, Keating E, Pinto E. The impact of folic a-cid supplementation on gestational and long term health: critical temporal windows, benefits and risks[J]. Porto Biomed J, 2017, 2(6): 315-332.
36 Raghavan R, Riley AW, Volk H, et al. Maternal multivitamin intake, plasma folate and vitamin B12 le-vels and autism spectrum disorder risk in offspring[J]. Paediatr Perinat Epidemiol, 2018, 32(1): 100-111.
37 Lee KS, Choi YJ, Cho J, et al. Environmental and genetic risk factors of congenital anomalies: an umbrella review of systematic reviews and meta-analyses[J]. J Korean Med Sci, 2021, 36(28): e183.
38 Bhaskar LV, Murthy J, Venkatesh Babu G. Polymorphisms in genes involved in folate metabolism and orofacial clefts[J]. Arch Oral Biol, 2011, 56(8): 723-737.
39 Weingärtner J, Lotz K, Fanghänel J, et al. Induction and prevention of cleft lip, alveolus and palate and neural tube defects with special consideration of B vitamins and the methylation cycle[J]. J Orofac Orthop, 2007, 68(4): 266-277.
40 Green R, Allen LH, Bjørke-Monsen AL, et al. Vitamin B12 deficiency[J]. Nat Rev Dis Primers, 2017, 3: 17040.
41 Fenech M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity[J]. Mutat Res, 2012, 733(1/2): 21-33.
42 Brender JD, Werler MM, Shinde MU, et al. Nitrosa-table drug exposure during the first trimester of pregnancy and selected congenital malformations[J]. Birth Defects Res A Clin Mol Teratol, 2012, 94(9): 701-713.
43 Mirvish SS, Wallcave L, Eagen M, et al. Ascorbate-nitrite reaction: possible means of blocking the formation of carcinogenic N-nitroso compounds[J]. Science, 1972, 177(4043): 65-68.
44 Navarro Sanchez ML, Swartz MD, Langlois PH, et al. Epidemiology of nonsyndromic, orofacial clefts in texas: differences by cleft type and presence of additional defects[J]. Cleft Palate Craniofac J, 2023, 60(7): 789-803.
45 Yang L, Wang H, Yang L, et al. Maternal cigarette smoking before or during pregnancy increases the risk of birth congenital anomalies: a population-based retrospective cohort study of 12 million mother-infant pairs[J]. BMC Med, 2022, 20(1): 4.
46 Vieira AR, Oxygen Dattilo S., asymmetryleft/right, and cleft lip and palate [J]. J Craniofac Surg, 2018, 29(2): 396-399.
47 Joubert BR, Felix JF, Yousefi P, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis[J]. Am J Hum Genet, 2016, 98(4): 680-696.
48 Shorey-Kendrick LE, McEvoy CT, O’Sullivan SM, et al. Impact of vitamin C supplementation on placental DNA methylation changes related to maternal smoking: association with gene expression and respiratory outcomes[J]. Clin Epigenet, 2021, 13: 177.
49 Ye YE, Jiang ZW, Pan YQ, et al. Role and mechanism of BMP4 in bone, craniofacial, and tooth development[J]. Arch Oral Biol, 2022, 140: 105465.
50 Slavec L, Karas Kuželički N, Locatelli I, et al. Genetic markers for non-syndromic orofacial clefts in populations of European ancestry: a meta-analysis[J]. Sci Rep, 2022, 12(1): 1214.
51 Yin B, Shi JY, Lin YS, et al. SNPs at TP63 gene was specifically associated with right-side cleft lip in Han Chinese population[J]. Oral Dis, 2021, 27(3): 559-566.
52 Sastry BV. Human placental cholinergic system[J]. Biochem Pharmacol, 1997, 53(11): 1577-1586.
53 Küchler EC, Silva LAD, Nelson-Filho P, et al. Assessing the association between hypoxia during craniofacial development and oral clefts[J]. J Appl Oral Sci, 2018, 26: e20170234.
54 Lo JO, Schabel MC, Roberts VH, et al. Vitamin C supplementation ameliorates the adverse effects of nicotine on placental hemodynamics and histology in nonhuman primates[J]. Am J Obstet Gynecol, 2015, 212(3): 370.e1-370.e8.
55 Sofianos C, Christofides EA, Phiri SE. Seasonal variation of orofacial clefts[J]. J Craniofac Surg, 2018, 29(2): 368-371.
56 Peterka M, Likovsky Z, Panczak A, et al. Long-term significant seasonal differences in the numbers of new-borns with an orofacial cleft in the Czech Republic-a retrospective study[J]. BMC Pregnancy Childbirth, 2018, 18(1): 348.
57 卜秀芬, 丁思意, 罗业超, 等. 孕期营养状况与非综合征型唇腭裂的相关性研究[J]. 湖南师范大学学报(医学版), 2020, 17(5): 34-37.
Bu XF, Ding SY, Luo YC, et al. Association between maternal nutritional status with non-syndro-mic cleft lip with or without cleft palate[J]. J Human Normal Univ (Med Sci), 2020, 17(5): 34-37.
58 邰怡, 韩旻轩. 维生素D及其受体遗传变异对非综合征型唇腭裂发生的影响[J]. 江苏医药, 2020, 46(10): 1041-1043.
Tai Y, Han MX. Effect of vitamin D and its receptor genetic variation on the occurrence of nonsyndro-mic cleft lip with or without cleft palate[J]. Jiangsu Med J, 2020, 46(10): 1041-1043.
59 Hong Y, Xu XR, Lian FZ, et al. Environmental risk factors for nonsyndromic cleft lip and/or cleft palate in Xinjiang Province, China: a multiethnic study[J]. Cleft Palate Craniofac J, 2021, 58(4): 489-496.
60 Wimalawansa SJ. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging[J]. Biology (Basel), 2019, 8(2): 30.
[1] 万雪丽,石永乐,张秀芬,王欢,田莉. 唇腭裂患儿全身麻醉苏醒期躁动多维干预体系的构建研究[J]. 国际口腔医学杂志, 2023, 50(3): 272-278.
[2] 陈卓,石冰,李精韬. 唇腭裂患者外鼻生长特征的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 279-286.
[3] 张沈懿,王翔剑,石黎冉,石佳鸿,汪玉红,周红梅. 口服β-胡萝卜素治疗非糜烂型口腔扁平苔藓的随机对照试验研究[J]. 国际口腔医学杂志, 2022, 49(6): 633-640.
[4] 裴玲,曾妮,杨超,何苗,罗强,石冰,郑谦. 辅助局部麻醉对唇腭裂整复术后镇痛效果的研究[J]. 国际口腔医学杂志, 2022, 49(6): 657-662.
[5] 戢晓,朱桂全. 维生素D与药物相关性颌骨坏死关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 441-447.
[6] 黄艺璇,石冰,李精韬. 唇腭裂患者鼻通气功能的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 453-461.
[7] 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336.
[8] 张琦,范存晖,杨茜,李然,徐晓琳,丁玮,王文惠,杨彩秀. 替牙期骨性Ⅲ类单侧完全性唇腭裂与非唇腭裂患者牙弓形态的对比研究[J]. 国际口腔医学杂志, 2022, 49(2): 144-152.
[9] 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724.
[10] 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519.
[11] 吴敏,石冰. 唇腭裂婴儿母乳喂养的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 269-273.
[12] 付琢惠,谭学莲,黄定明. 牙源性上颌窦炎的诊疗策略[J]. 国际口腔医学杂志, 2021, 48(3): 367-372.
[13] 侯亚丽,马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4): 397-405.
[14] 宋少华,莫水学. 唇腭裂患者序列治疗中的正畸治疗[J]. 国际口腔医学杂志, 2019, 46(6): 740-744.
[15] 周雨曦,雍翔智,江巧芝,陶人川. 口腔慢性移植物抗宿主病的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 609-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .