国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 523-527.doi: 10.7518/gjkq.2017.05.006

• 牙周专栏 • 上一篇    下一篇

表观遗传学及其调控与牙周病

刘双, 李纾   

  1. 山东大学口腔医院牙周科,山东省口腔组织再生重点实验室 济南 250012
  • 收稿日期:2016-11-23 修回日期:2017-05-26 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 李纾,教授,博士,Email:lishu@sdu.edu.cn
  • 作者简介:刘双,硕士,Email:1032642912@qq.com

The effect of epigenetics and its regulation on periodontal disease

Liu Shuang, Li Shu.   

  1. Dept. of Periodontics, Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-23 Revised:2017-05-26 Online:2017-09-01 Published:2017-09-01

摘要: 表观遗传学是指不涉及DNA序列改变,而是通过有丝分裂和减数分裂进行遗传的基因表达变化的遗传学分支学科,其调控机制主要包括DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA调控等。牙周炎病因复杂,且被吸收、破坏的牙槽骨很难实现功能性再生。表观遗传学在导致炎症的发生及促进骨再生的过程中扮演着重要角色,从表观遗传学及其调控的角度来预防牙周病的发生,促进牙槽骨的功能性再生,将是未来重要的研究内容,具有重要的临床意义。

关键词: 表观遗传学, 牙周病, 牙槽骨再生

Abstract: Epigenetics is defined as not involved in the change of the DNA sequence, but through mitosis and meiosis of the genetic changes in the genetics of the field, and its regulatory mechanisms include DNA methylation, histone modification, chromatin remodeling and non-encoding RNA regulation. The pathogeny of periodontal disease is complex, and it is difficult to achieve functional regeneration of alveolar bone. Epigenetic plays an important role in the development of inflammation and the promotion of bone regeneration. It will be an important research field in the future and have important clinical significance to prevent the occurrence of periodontal disease and make the functional regeneration of alveolar bone possible from the perspective of the epigenetic and its regulation.

Key words: epigenetics, periodontics, alveolar bone regeneration

中图分类号: 

  • R781.4
[1] 金洁琪, 吴红崑. 肥胖与口腔健康关系的研究[J]. 华西口腔医学杂志, 2015, 33(4):428-430.
Jin JQ, Wu HK. Relation between obesity and oral health[J]. West Chin J Stomatol, 2015, 33(4):428- 430.
[2] Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation[J]. J Periodontol, 2008, 79 (8 Suppl):1577-1584.
[3] Perri R, Nares S, Zhang S, et al. MicroRNA modu-lation in obesity and periodontitis[J]. J Dent Res, 2012, 91(1):33-38.
[4] Zhang S, Barros SP, Niculescu MD, et al. Alteration of PTGS2 promoter methylation in chronic periodon-titis[J]. J Dent Res, 2010, 89(2):133-137.
[5] Feng P, Wang X, Casado PL, et al. Genome wide association scan for chronic periodontitis implicates novel locus[J]. BMC Oral Health, 2014, 14:84.
[6] Cencioni C, Spallotta F, Martelli F, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases[J]. Int J Mol Sci, 2013, 14(9):17643- 17663.
[7] Ohi T, Uehara Y, Takatsu M, et al. Hypermethylation of CpGs in the promoter of the COL1A1 gene in the aged periodontal ligament[J]. J Dent Res, 2006, 85 (3):245-250.
[8] 赵金璇, 王芳, 徐峥嵘, 等. 表观遗传调控pre-mRNA的选择性剪接[J]. 遗传, 2014, 36(3):248- 255.
Zhao JX, Wang F, Xu ZR, et al. The epigenetic effect on pre-mRNA alternative splicing[J]. Hereditas, 2014, 36(3):248-255.
[9] Kargul J, Laurent GJ. Bioenergetic dysfunction in disease[J]. Int J Biochem Cell Biol, 2013, 45(1):1.
[10] Schulz S, Immel UD, Just L, et al. Epigenetic charac-teristics in inflammatory candidate genes in aggressive periodontitis[J]. Hum Immunol, 2016, 77(1):71-75.
[11] 刘昕訸, 张彦洁, 罗茂财, 等. 固有免疫细胞及其模式识别受体与表观遗传学调控研究进展[J]. 生命科学, 2014, 26(8):846-851.
Liu XH, Zhang YJ, Luo MC, et al. Research progress in regulation of innate immune cells and pattern re-cognition receptors by epigenetics[J]. Chin Bulle Life Sci, 2014, 26(8):846-851.
[12] Andia DC, de Oliveira NF, Casarin RC, et al. DNA methylation status of the IL8 gene promoter in ag-gressive periodontitis[J]. J Periodontol, 2010, 81(9): 1336-1341.
[13] Kikuchi S, Yamada D, Fukami T, et al. Hyperme-thylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in pri-mary nonsmall cell lung carcinoma[J]. Cancer, 2006, 106(8):1751-1758.
[14] He Z, Wang X, Deng Y, et al. Epigenetic regulation of Thy-1 gene expression by histone modification is involved in lipopolysaccharide-induced lung fibro-blast proliferation[J]. J Cell Mol Med, 2013, 17(1): 160-167.
[15] Ogbomo H, Michaelis M, Kreuter J, et al. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity[J]. FEBS Lett, 2007, 581(7):1317- 1322.
[16] Tang G. siRNA and miRNA: an insight into RISCs [J]. Trends Biochem Sci, 2005, 30(2):106-114.
[17] Wu CT, Morris JR. Genes, genetics, and epigenetics: a correspondence[J]. Science, 2001, 293(5532):1103- 1105.
[18] Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Res, 2008, 36(Database issue):D154-D158.
[19] Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function[J]. J Immunol, 2011, 187(8):3911-3917.
[20] Leong JW, Sullivan RP, Fehniger TA. Natural killer cell regulation by microRNAs in health and disease [J]. J Biomed Biotechnol, 2012, 2012:632329.
[21] Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human den-dritic cell differentiation[J]. Science, 2014, 344 (6181):310-313.
[22] de Faria Amormino SA, Arão TC, Saraiva AM, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis[J]. Hum Immunol, 2013, 74(9):1231-1236.
[23] Xia M, Liu J, Wu X, et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and in-flammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20[J]. Immunity, 2013, 39(3):470-481.
[24] Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J]. Elife, 2013, 2:e00762.
[25] Larsson L, Castilho RM, Giannobile WV. Epigene-tics and its role in periodontal diseases: a state-of-the-art review[J]. J Periodontol, 2015, 86(4):556- 568.
[26] Drury JL, Chung WO. DNA methylation differen-tially regulates cytokine secretion in gingival epi-thelia in response to bacterial challenges[J]. Pathog Dis, 2015, 73(2):1-6.
[27] Schoolmeesters A, Eklund T, Leake D, et al. Func-tional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells[J]. PLoS One, 2009, 4(5):e5605.
[28] Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development[J]. DNA Cell Biol, 2007, 26(4):219-225.
[29] 陆细红, 邓敏, 贺洪辉, 等. miR-125b通过靶向抑制Smad4调控骨髓间充质干细胞成骨分化[J]. 中南大学学报(医学版), 2013, 38(4):341-346.
Lu XH, Deng M, He HH, et al. miR-125b regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting Smad4[J]. J Central South Univ(Med Sci), 2013, 38(4):341-346.
[30] Baglìo SR, Devescovi V, Granchi D, et al. Micro-RNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic diffe-rentiation reveals Osterix regulation by miR-31[J]. Gene, 2013, 527(1):321-331.
[31] Matysiak M, Fortak-Michalska M, Szymanska B, et al. MicroRNA-146a negatively regulates the im-munoregulatory activity of bone marrow stem cells by targeting prostaglandin E 2 synthase-2[J]. J Im-munol, 2013, 190(10):5102-5109.
[32] Su X, Liao L, Shuai Y, et al. MiR-26a functions op-positely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6(8):e1851.
[33] 王海鹏, 高杰, 张小平, 等. miR-30a-5P在人骨髓间充质干细胞向成骨细胞分化过程中的生物学功能及验证[J]. 中国医药导报, 2011, 8(16):23-26.
Wang HP, Gao J, Zhang XP, et al. Function expre-ssion and verification of human miR-30a-5p in the inducing hbmscs into osteoblasts[J]. Chin Med He-rald , 2011, 8(16):23-26.
[34] Grover V, Kapoor A, Malhotra R, et al. Epigenetics and periodontal disease: hope to tame the untameable [J]. Curr Gene Ther, 2014, 14(6):473-481.
[35] Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Perio-dontol 2000, 2014, 64(1):95-110.
[36] 周巍, 赵春晖, 梅陵宣. 骨保护素基因修饰联合细胞移植技术促进牙周组织再生的实验研究[J]. 华西口腔医学杂志, 2010, 28(3):324-329.
Zhou W, Zhao CH, Mei LX. Effect of the compound of poly lactic-co-glycolic acid and bone marrow stromal cells modified by osteoprotegerin gene on the periodontal regeneration in Beagle dog perio-dontal defects[J]. West Chin J Stomatol, 2010, 28(3): 324-329.
[37] Lod S, Johansson T, Abrahamsson KH, et al. The influence of epigenetics in relation to oral health[J]. Int J Dent Hyg, 2014, 12(1):48-54.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[3] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[4] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[5] 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99.
[6] 白皓亮,杨禾,赵蕾. 牙周病风险评估及预后判断工具的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 696-702.
[7] 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519.
[8] 周万航,李嫣斐,许日聪,万启军. 牙周非手术治疗对慢性肾脏病危险因素及全身炎症水平影响的Meta分析[J]. 国际口腔医学杂志, 2021, 48(5): 528-535.
[9] 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353.
[10] 秦小茹,刘梦圆. 牙周病和心肌梗死发生风险相关性队列研究的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 165-172.
[11] 郏乐铭,贾小玥,杨燃,周学东,徐欣. 益生菌制剂在牙周病防治中的应用进展[J]. 国际口腔医学杂志, 2020, 47(5): 515-521.
[12] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
[13] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[14] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[15] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .