国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 36-42.doi: 10.7518/gjkq.2026002
Zekai Xu(
),Wenzhi Wu,Zhuo Chen(
)
摘要:
牙髓间充质干细胞,又称牙髓干细胞,是近年来备受关注的一种具有免疫调节、组织再生等多种能力的间充质干细胞。巨噬细胞是一种经典的免疫细胞,在炎症环境中可极化为多种功能不同的表型,发挥促炎、抗炎等不同作用,还可分化为破骨细胞,在多种疾病中起重要作用。研究牙髓干细胞与巨噬细胞的交互作用具有广阔的临床前景。本文就牙髓干细胞与巨噬细胞两者间的交互作用进行综述,主要探讨了牙髓干细胞对巨噬细胞极化、迁移和分化的调控作用,以及不同表型巨噬细胞对牙髓干细胞增殖、分化等的调控作用,以期为利用牙髓干细胞治疗炎症相关疾病提供理论依据。
中图分类号:
| [1] | Wang LH, Gao SZ, Bai XL, et al. An up-to-date overview of dental tissue regeneration using dental origin mesenchymal stem cells: challenges and road ahead[J]. Front Bioeng Biotechnol, 2022, 10: 855396. |
| [2] | Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630. |
| [3] | Luo LH, Xing ZJ, Liao XY, et al. Dental pulp stem cells-based therapy for the oviduct injury via immunomodulation and angiogenesis in vivo [J]. Cell Prolif, 2022, 55(10): e13293. |
| [4] | Hu ZQ, Chen YY, He J, et al. EZH2 might affect macrophage chemotaxis and anti-inflammatory factors by regulating CCL2 in dental pulp inflammation[J]. Stem Cells Int, 2021, 2021: 3060480. |
| [5] | Choi B, Kim JE, Park SO, et al. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways[J]. Int J Oral Sci, 2022, 14(1): 21. |
| [6] | Martinez VG, Ontoria-Oviedo I, Ricardo CP, et al. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1): 208. |
| [7] | Chansaenroj A, Kornsuthisopon C, Suwittayarak R, et al. IWP-2 modulates the immunomodulatory properties of human dental pulp stem cells in vitro [J]. Int Endod J, 2024, 57(2): 219-236. |
| [8] | Albashari A, He Y, Zhang YN, et al. Thermosensitive bFGF-modified hydrogel with dental pulp stem cells on neuroinflammation of spinal cord injury[J]. ACS Omega, 2020, 5(26): 16064-16075. |
| [9] | Omi M, Hata M, Nakamura N, et al. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy[J]. J Diabetes Investig, 2016, 7(4): 485-496. |
| [10] | Li PL, Wang YX, Zhao ZD, et al. Clinical-grade human dental pulp stem cells suppressed the activation of osteoarthritic macrophages and attenuated cartilaginous damage in a rabbit osteoarthritis model[J]. Stem Cell Res Ther, 2021, 12(1): 260. |
| [11] | Liu C, Hu FQ, Jiao GL, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polari-zation through the ROS-MAPK-NFκB P65 signa-ling pathway after spinal cord injury[J]. J Nanobiotechnology, 2022, 20(1): 65. |
| [12] | Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a ma-crophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |
| [13] | Zheng JM, Kong YY, Hu XL, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis[J]. Stem Cell Res Ther, 2020, 11(1): 517. |
| [14] | Lee S, Zhang QZ, Karabucak B, et al. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis[J]. J Dent Res, 2016, 95(11): 1274-1281. |
| [15] | Anderson S, Prateeksha P, Das H. Dental pulp-derived stem cells reduce inflammation, accelerate wound healing and mediate M2 polarization of mye-loid cells[J]. Biomedicines, 2022, 10(8): 1999. |
| [16] | Yang Z, Ma LS, Du CL, et al. Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization[J]. iScience, 2023, 26(10): 108043. |
| [17] | Kanji S, Sarkar R, Pramanik A, et al. Dental pulp-derived stem cells inhibit osteoclast differentiation by secreting osteoprotegerin and deactivating AKT signalling in myeloid cells[J]. J Cell Mol Med, 2021, 25(5): 2390-2403. |
| [18] | Kong FX, Shi XF, Xiao FJ, et al. Transplantation of hepatocyte growth factor-modified dental pulp stem cells prevents bone loss in the early phase of ovarie-ctomy-induced osteoporosis[J]. Hum Gene Ther, 2018, 29(2): 271-282. |
| [19] | Zheng Y, Chen M, He L, et al. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis[J]. J Dent Res, 2015, 94(6): 821-827. |
| [20] | Yamada Y, Nakamura-Yamada S, Umemura-Kubota E, et al. Diagnostic cytokines and comparative analy-sis secreted from exfoliated deciduous teeth, dental pulp, and bone marrow derived mesenchymal stem cells for functional cell-based therapy[J]. Int J Mol Sci, 2019, 20(23): 5900. |
| [21] | Hayashi Y, Murakami M, Kawamura R, et al. CXCL14 and MCP1 are potent trophic factors asso-ciated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells[J]. Stem Cell Res Ther, 2015, 6(1): 111. |
| [22] | Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance[J]. Science, 2021, 374(6567): eabb3420. |
| [23] | Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential[J]. Int J Mol Sci, 2021, 22(21): 12018. |
| [24] | Ogata K, Moriyama M, Matsumura-Kawashima M, et al. The therapeutic potential of secreted factors from dental pulp stem cells for various diseases[J]. Biomedicines, 2022, 10(5): 1049. |
| [25] | Martínez-Sarrà E, Montori S, Gil-Recio C, et al. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration[J]. Stem Cell Res Ther, 2017, 8(1): 175. |
| [26] | Murakami M, Horibe H, Iohara K, et al. The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential[J]. Biomaterials, 2013, 34(36): 9036-9047. |
| [27] | Iohara K, Murakami M, Takeuchi N, et al. A novel combinatorial therapy with pulp stem cells and gra-nulocyte colony-stimulating factor for total pulp regeneration[J]. Stem Cells Transl Med, 2013, 2(7): 521-533. |
| [28] |
Dou L, Yan Q, Liang P, et al. iTRAQ-based proteomic analysis exploring the influence of hypoxia on the proteome of dental pulp stem cells under 3D culture[J]. Proteomics, 2018, 18(3/4). doi: 10.1002/pmic.201700215 .
doi: 10.1002/pmic.201700215 |
| [29] | Zeng JK, Chen M, Yang YQ, et al. A novel hypoxic lncRNA, HRL-SC, promotes the proliferation and migration of human dental pulp stem cells through the PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2022, 13(1): 286. |
| [30] | Ahmed NE, Murakami M, Kaneko S, et al. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs)[J]. Sci Rep, 2016, 6: 35476. |
| [31] | Bousnaki M, Bakopoulou A, Pich A, et al. Mapping the secretome of dental pulp stem cells under varia-ble microenvironmental conditions[J]. Stem Cell Rev Rep, 2022, 18(4): 1372-1407. |
| [32] | Zhang Y, Böse T, Unger RE, et al. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs[J]. Cell Tissue Res, 2017, 369(2): 273-286. |
| [33] | Wasnik S, Rundle CH, Baylink DJ, et al. 1,25-Dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites[J]. JCI Insight, 2018, 3(17): e98773. |
| [34] | Kieu TQ, Tazawa K, Kawashima N, et al. Kinetics of LYVE-1-positive M2-like macrophages in deve-loping and repairing dental pulp in vivo and their pro-angiogenic activity in vitro [J]. Sci Rep, 2022, 12(1): 5176. |
| [35] | Krivanek J, Soldatov RA, Kastriti ME, et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth[J]. Nat Commun, 2020, 11(1): 4816. |
| [36] | Neves VCM, Yianni V, Sharpe PT. Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis[J]. Sci Rep, 2020, 10(1): 20216. |
| [37] | Park HC, Quan HX, Zhu TT, et al. The effects of M1 and M2 macrophages on odontogenic differen-tiation of human dental pulp cells[J]. J Endod, 2017, 43(4): 596-601. |
| [38] | Salkin H, Acar MB, Korkmaz S, et al. Transforming growth factor β1-enriched secretome up-regulate osteogenic differentiation of dental pulp stem cells, and a potential therapeutic for gingival wound hea-ling: a comparative proteomics study[J]. J Dent, 2022, 124: 104224. |
| [39] | Manokawinchoke J, Watcharawipas T, Ekmetipunth K, et al. Dorsomorphin attenuates Jagged1-induced mineralization in human dental pulp cells[J]. Int Endod J, 2021, 54(12): 2229-2242. |
| [40] | Jiang LM, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells[J]. J Dent, 2020, 103: 103501. |
| [41] | Niwa T, Yamakoshi Y, Yamazaki H, et al. The dynamics of TGF‑β in dental pulp, odontoblasts and dentin[J]. Sci Rep, 2018, 8(1): 4450. |
| [42] | Liang C, Liang QQ, Xu X, et al. Bone morphogene-tic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration[J]. Int J Oral Sci, 2022, 14(1): 38. |
| [43] | Salkın H, Gönen ZB, Ergen E, et al. Effects of TGF-β1 overexpression on biological characteristics of human dental pulp-derived mesenchymal stromal cells[J]. Int J Stem Cells, 2019, 12(1): 170-182. |
| [44] | Yuan L, You HX, Qin NH, et al. Interleukin-10 mo-dulates the metabolism and osteogenesis of human dental pulp stem cells[J]. Cell Reprogram, 2021, 23(5): 270-276. |
| [45] | Paula-Silva FW, Ghosh A, Silva LA, et al. TNF-alpha promotes an odontoblastic phenotype in dental pulp cells[J]. J Dent Res, 2009, 88(4): 339-344. |
| [46] | Kang W, Wang YW, Li JY, et al. TAS2R supports odontoblastic differentiation of human dental pulp stem cells in the inflammatory microenvironment[J]. Stem Cell Res Ther, 2022, 13(1): 374. |
| [47] | 杨雪超, 张思远, 樊明文, 等. 白细胞介素1β对牙髓干细胞矿化潜能的影响[J]. 中华口腔医学杂志, 2011, 46(7): 406-411. |
| Yang XC, Zhang SY, Fan MW, et al. Effects of interleukin-1β on mineralization potential of dental pulp stem cells[J]. Chin J Stomatol, 2011, 46(7): 406-411. | |
| [48] | Zhai Y, Yuan XJ, Zhao YM, et al. Potential application of human β-defensin 4 in dental pulp repair[J]. Front Physiol, 2020, 11: 1077. |
| [49] | Alongi DJ, Yamaza T, Song YJ, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential[J]. Regen Med, 2010, 5(4): 617-631. |
| [50] | Nozu A, Hamano S, Tomokiyo A, et al. Senescence and odontoblastic differentiation of dental pulp cells[J]. J Cell Physiol, 2018, 234(1): 849-859. |
| [51] | Inostroza C, Vega-Letter AM, Brizuela C, et al. Me-senchymal stem cells derived from human inflamed dental pulp exhibit impaired immunomodulatory capacity in vitro [J]. J Endod, 2020, 46(8): 1091-1098. e2. |
| [52] | Zheng CX, Chen J, Liu SY, et al. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation[J]. Int J Oral Sci, 2019, 11(3): 23. |
| [53] | Yang Y, Alves T, Miao MZ, et al. Single-cell transcriptomic analysis of dental pulp and periodontal ligament stem cells[J]. J Dent Res, 2024, 103(1): 71-80. |
| [54] | Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates deci-duous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223. |
| [55] | Gu N, Wang Y, Sun GT, et al. Exploring wound management in dental pulp: utilizing single-cell RNA sequencing for global transcriptomic analysis in healthy and inflamed pulpal tissues[J]. Int Wound J, 2024, 21(3): e14804. |
| [1] | 伍行,刘玉平,张伊钒,夏郁葱,李照禾,易小炜,夏鸿,丁文文. 原花青素对口腔疾病调控机制和防治的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 644-654. |
| [2] | 王博群,陆慧,穆晴,赵玮. 牙源性间充质干细胞来源细胞外囊泡的免疫调节作用[J]. 国际口腔医学杂志, 2025, 52(5): 655-661. |
| [3] | 高雪钰,刘玉红,赵彦涛,闫钧. 牙颌干细胞与免疫细胞的交互调控作用[J]. 国际口腔医学杂志, 2025, 52(4): 534-543. |
| [4] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
| [5] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
| [6] | 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483. |
| [7] | 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292. |
| [8] | 杨宇轩,张海霞,王爽. 釉原蛋白在牙周组织再生中的生物学作用[J]. 国际口腔医学杂志, 2019, 46(2): 191-196. |
| [9] | 朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448. |
| [10] | 林冬佳, 彭志翔, 高燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438. |
| [11] | 张湘宜, 刘亚丽. 牙源性干细胞的免疫调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 276-279. |
| [12] | 武云舒, 袁泉. RNA腺嘌呤6-甲基化修饰调控干细胞分化的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 272-275. |
| [13] | 黄月华, 唐晓琳. 单核-吞噬细胞系统与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 528-532. |
| [14] | 潘佳慧, 唐秋玲, 李格格, 侯玉帛, 于维先. 巨噬细胞极化在牙龈卟啉单胞菌促进牙周炎发生发展中的作用[J]. 国际口腔医学杂志, 2017, 44(5): 533-537. |
| [15] | 胥欣 王艳民 白丁. 沉默交配型信息调节因子2同源蛋白1与骨和软骨代谢的关系[J]. 国际口腔医学杂志, 2016, 43(5): 569-572. |
|
||