国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (4): 534-543.doi: 10.7518/gjkq.2025050
Xueyu Gao1,2(),Yuhong Liu1,Yantao Zhao3,4,Jun Yan1(
)
摘要:
牙颌干细胞容易获得,技术和伦理的制约问题较少,且具有更强的增殖能力和更稳定的形态。免疫细胞在体内分布广泛,可以和牙颌干细胞相互调控,这有利于组织稳态和炎症性疾病的治疗,进一步研究其相互调控机制,具有重要的临床意义。牙颌干细胞和免疫细胞的交互调控作用可以控制牙颌干细胞的生物学行为,调节局部炎症微环境,合理的应用可以促进组织再生和炎症的治疗。但牙颌干细胞和免疫细胞的交互调控机制大部分尚未明确,已发现的机制缺少临床试验佐证,在应用于临床治疗前还需进一步探索。本文归纳总结牙颌干细胞与免疫细胞之间的相互调控作用和机制,以期在临床应用中提供参考。
中图分类号:
1 | Hu JC, Cao Y, Xie YL, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells follo-wing good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7(1): 130. |
2 | Lee S, Zhang QZ, Karabucak B, et al. DPSCs from inflamed pulp modulate macrophage function via the TNF‑α/IDO axis[J]. J Dent Res, 2016, 95(11): 1274-1281. |
3 | 李金超, 江欣, 张华, 等. 牙髓间充质干细胞对巨噬细胞极化的调节作用[J]. 口腔颌面外科杂志, 2019, 29(5): 253-259. |
Li JC, Jiang X, Zhang H, et al. The regulatory effect of dental pulp stem cells on the polarization of ma-crophages[J]. China J Oral Maxillofac Surg, 2019, 29(5): 253-259. | |
4 | Shen Z, Kuang S, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. |
5 | 宫晟凯, 杨晓姗, 窦庚, 等. 牙髓干细胞来源凋亡小体调节巨噬细胞极化及炎症反应[J]. 口腔疾病防治, 2022, 30(1): 12-19. |
Gong SK, Yang XS, Dou G, et al. Dental pulp stem cell? Derived apoptotic bodies regulate macrophage polarization and inflammatory response[J]. J Prev Treat Stomatol Dis, 2022, 30(1): 12-19. | |
6 | 谭旭, 梁羽, 梁燕, 等. 缺氧处理牙髓干细胞外泌体诱导M2巨噬细胞极化[J]. 中国组织工程研究, 2022, 26(25): 3961-3967. |
Tan X, Liang Y, Liang Y, et al. Hypoxia-treated dental pulp stem cell exosomes induce M2 macrophage polarization[J]. Chin J Tissue Eng Res, 2022, 26(25): 3961-3967. | |
7 | Liu C, Hu F, Jiao G, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury[J]. J Nanobiotechnology, 2022, 20(1): 65. |
8 | Kwack KH, Lee JM, Park SH, et al. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta[J]. J Endod, 2017, 43(1): 100-108. |
9 | Ahmadi P, Yan M, Bauche A, et al. Human dental pulp cells modulate CD8+ T cell proliferation and efficiently degrade extracellular ATP to adenosine in vitro [J]. Cell Immunol, 2022, 380: 104589. |
10 | Jewett A, Arasteh A, Tseng HC, et al. Strategies to rescue mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) from NK cell mediated cytotoxicity[J]. PLoS One, 2010, 5(3): e9874. |
11 | Neves VCM, Yianni V, Sharpe PT. Macrophage mo-dulation of dental pulp stem cell activity during tertiary dentinogenesis[J]. Sci Rep, 2020, 10(1): 20216. |
12 | Zhou J, Ou MH, Wei XL, et al. The role of different macrophages-derived conditioned media in dental pulp tissue regeneration[J]. Tissue Cell, 2022, 79: 101944. |
13 | Lyu J, Hashimoto Y, Honda Y, et al. Comparison of osteogenic potentials of dental pulp and bone marrow mesenchymal stem cells using the new cell transplantation platform, cellsaic, in a rat congenital cleft-jaw model[J]. Int J Mol Sci, 2021, 22(17): 9478. |
14 | Liu JY, Chen B, Bao J, et al. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration[J]. Stem Cell Res Ther, 2019, 10(1): 320. |
15 | Liu OS, Xu JJ, Ding G, et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1[J]. Stem Cells, 2013, 31(7): 1371-1382. |
16 | Um S, Kim HY, Lee JH, et al. TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway[J]. Cell Tissue Res, 2017, 368(3): 551-561. |
17 | Shin C, Kim M, Han JA, et al. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompa-tibility complex-like glycoprotein CD1b on dendri-tic cells[J]. J Periodontal Res, 2017, 52(1): 135-146. |
18 | Wang Q, Ding G, Xu X. Periodontal ligament stem cells regulate apoptosis of neutrophils[J]. Open Med (Wars), 2017, 12: 19-23. |
19 | Liu J, Wang H, Zhang L, et al. Periodontal ligament stem cells promote polarization of M2 macrophages[J]. J Leukoc Biol, 2022, 111(6): 1185-1197. |
20 | 赵辛, 杨宽, 王子瑞, 等. 根吸收不同时期乳牙牙周膜干细胞通过NK细胞进行免疫调节作用的研究[J]. 口腔医学, 2020, 40(6): 517-520, 575. |
Zhao X, Yang K, Wang ZR, et al. Deciduous perio-dontal ligament stem cells at different stages of root absorption through natural killer cells for immunomodulation[J]. West China J Stomatol, 2020, 40(6): 517-520, 575. | |
21 | 刘娜, 李影, 王燕一, 等. TNF-α刺激下人牙周膜干细胞对CD3+T细胞功能的影响[J]. 口腔颌面修复学杂志, 2021, 22(4): 241-245, 273. |
Liu N, Li Y, Wang YY, et al. The effects of TNF-α stimulation of human periodontal stem cells on CD3+T cell function[J]. Chin J Prosthodont, 2021, 22(4): 241-245, 273. | |
22 | Singhatanadgit W, Kitpakornsanti S, Toso M, et al. IFNγ-primed periodontal ligament cells regulate T-cell responses via IFNγ-inducible mediators and ICAM-1-mediated direct cell contact[J]. R Soc Open Sci, 2022, 9(7): 220056. |
23 | Đorđević IO, Kukolj T, Krstić J, et al. The inhibition of periodontal ligament stem cells osteogenic diffe-rentiation by IL-17 is mediated via MAPKs[J]. Int J Biochem Cell Biol, 2016, 71: 92-101. |
24 | 王清. 牙周膜干细胞与中性粒细胞相互影响的研究[D]. 济南: 山东大学, 2017. |
Wang Q. Study on the interaction between periodontal ligament stem cells and neutrophils[D]. Jinan: Shandong University, 2017. | |
25 | 李影. 炎症微环境下牙周膜干细胞与CD3+T细胞相互作用的机制研究[D]. 北京: 中国人民解放军医学院, 2019. |
Li Y. Mechanism of interaction between periodontal ligament stem cells and CD3+T cells in inflammatory microenvironment[D]. Beijing: Chinese People’s Liberation Army Medical School, 2019. | |
26 | 王钊鑫, 尼加提 · 吐尔逊, 代慧娟, 等. 巨噬细胞炎性蛋白1α对人牙周膜干细胞生物学行为的影响[J]. 中国组织工程研究, 2023, 27(10): 1521-1527. |
Wang ZX, Nijati·Tursun, Dai HJ, et al. Effect of macrophage inflammatory protein-1α on the biological behavior of human periodontal ligament stem cells[J]. Chin J Tissue Eng Res, 2023, 27(10): 1521-1527. | |
27 | Liu G, Zhang L, Zhou X, et al. Inducing the “re-development state” of periodontal ligament cells via tuning macrophage mediated immune microenvironment[J]. J Adv Res, 2024, 60: 233-248. |
28 | Whiting D, Chung WO, Johnson JD, et al. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system[J]. J Endod, 2018, 44(7): 1126-1131. |
29 | Liu XM, Liu Y, Yu S, et al. Potential immunomodulatory effects of stem cells from theapical papilla on Treg conversion in tissue regeneration for regenerative endodontic treatment[J]. Int Endodontic J, 2019, 52(12): 1758-1767. |
30 | Lin X, Wang H, Wu T, et al. Exosomes derived from stem cells from apical papilla promote angiogenesis via miR-126 under hypoxia[J]. Oral Dis, 2023, 29(8): 3408-3419. |
31 | Yu S, Chen X, Liu Y, et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells[J]. Int Endod J, 2022, 55(5): 517-530. |
32 | Miron PO, Ben Lagha A, Azelmat J, et al. Production of TNF-α by macrophages stimulated with en-dodontic pathogens and its effect on the biological properties of stem cells of the apical papilla[J]. Clin Oral Investig, 2021, 25(9): 5307-5315. |
33 | Li FC, Hussein H, Magalhaes M, et al. Deciphering stem cell from apical papilla-macrophage choreography using a novel 3-dimensional organoid system[J]. J Endod, 2022, 48(8): 1063-1072.e7. |
34 | Jiang CM, Liu J, Zhao JY, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells[J]. J Dent Res, 2015, 94(1): 69-77. |
35 | Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65(5): 1181-1193. |
36 | Gu YC, Shi ST. Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-indu-ced arthritis[J]. Arthritis Res Ther, 2016, 18(1): 262. |
37 | Huang F, Chen MG, Chen WQ, et al. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adeno-sine and IDO signals[J]. Front Immunol, 2017, 8: 68. |
38 | Hong RD, Wang ZG, Sui AH, et al. Gingival mesenchymal stem cells attenuate pro-inflammatory macrophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism[J]. Arch Oral Biol, 2019, 98: 92-98. |
39 | Lu YS, Xu YR, Zhang SP, et al. Human gingiva-derived mesenchymal stem cells alleviate inflammatory bowel disease via IL-10 signalling-dependent mo-dulation of immune cells[J]. Scand J Immunol, 2019, 90(3): e12751. |
40 | Ni X, Xia Y, Zhou S, et al. Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways[J]. Cell Death Dis, 2019, 10(1): 13. |
41 | Zhao J, Chen J, Huang F, et al. Human gingiva tissue-derived MSC ameliorates immune-mediated bone marrow failure of aplastic anemia via suppression of Th1 and Th17 cells and enhancement of CD4+Foxp3+ regulatory T cells differentiation[J]. Am J Transl Res, 2019, 11(12): 7627-7643. |
42 | 张楷, 陈柯妍, 李凯, 等. 人牙龈间充质干细胞对B细胞的作用及机制研究[J]. 器官移植, 2020, 11(2): 253-258. |
Zhang K, Chen KY, Li K, et al. Effect and mechanism of human gingival mesenchymal stem cell on B cells[J]. Organ Transplant, 2020, 11(2): 253-258. | |
43 | Dang JL, Xu ZJ, Xu AP, et al. Human gingiva-derived mesenchymal stem cells are therapeutic in lupus nephritis through targeting of CD39-CD73 sig-naling pathway[J]. J Autoimmun, 2020, 113: 102491. |
44 | Zhao J, Liu R, Zhu J, et al. Human gingiva-derived mesenchymal stem cells promote osteogenic diffe-rentiation through their immunosuppressive function[J]. J Oral Biosci, 2021: S1349-79(21)00092-X. |
45 | Giacomelli C, Natali L, Nisi M, et al. Negative effects of a high tumour necrosis factor‑α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents[J]. Stem Cell Res Ther, 2018, 9(1): 135. |
46 | Mekhemar M, Tölle J, Hassan Y, et al. Thymoquinone-mediated modulation of toll-like receptors and pluripotency factors in gingival mesenchymal stem/progenitor cells[J]. Cells, 2022, 11(9): 1452. |
47 | Mekhemar M, Tölle J, Dörfer C, et al. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells[J]. J Clin Periodontol, 2020, 47(8): 991-1005. |
48 | Chen X, Yang B, Tian J, et al. Dental follicle stem cells ameliorate lipopolysaccharide-induced inflammation by secreting TGF-β3 and TSP-1 to elicit macrophage M2 polarization[J]. Cell Physiol Biochem, 2018, 51(5): 2290-2308. |
49 | Kriebel K, Hieke C, Engelmann R, et al. Porphyromonas gingivalis peptidyl arginine deiminase can modulate neutrophil activity via infection of human dental stem cells[J]. J Innate Immun, 2018, 10(4): 264-278. |
50 | Genç D, Zibandeh N, Nain E, et al. Dental follicle mesenchymal stem cells down-regulate Th2-media-ted immune response in asthmatic patients mononuclear cells[J]. Clin Exp Allergy, 2018, 48(6): 663-678. |
51 | Genç D, Zibandeh N, Nain E, et al. IFN-γ stimulation of dental follicle mesenchymal stem cells mo-dulates immune response of CD4+ T lymphocytes in Der p1+ asthmatic patients in vitro [J]. Allergol Immunopathol, 2019, 47(5): 467-476. |
52 | Zibandeh N, Genç D, İnanç GN, et al. IFN-γ stimulated dental follicle mesenchymal stem cells regulate activated lymphocyte response in rheumatoid arthritis patients in vitro [J]. Turk J Med Sci, 2019, 49(6): 1779-1788. |
53 | Zibandeh N, Genc D, Duran Y, et al. Human dental follicle mesenchymal stem cells alleviate T cell response in inflamed tissue of Crohn’s patients[J]. Turk J Gastroenterol, 2020, 31(5): 400-409. |
54 | Topcu Sarica L, Zibandeh N, Genç D, et al. Immunomodulatory and tissue-preserving effects of human dental follicle stem cells in a rat cecal ligation and perforation sepsis model[J]. Arch Med Res, 2020, 51(5): 397-405. |
55 | Zibandeh N, Genc D, Ozgen Z, et al. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis[J]. Immunotherapy, 2021, 13(10): 825-840. |
56 | Genç D, Bulut O, Günaydin B, et al. Dental follicle mesenchymal stem cells ameliorated glandular dysfunction in Sjögren’s syndrome murine model[J]. PLoS One, 2022, 17(5): e0266137. |
57 | Dai YY, Ni SY, Ma K, et al. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro [J]. Stem Cell Res Ther, 2019, 10(1): 39. |
58 | Yang N, Liu X, Chen X, et al. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren’s syndrome by secreting soluble PD-L1[J]. J Leukoc Biol, 2022, 111(5): 1043-1055. |
59 | Junior AL, Pinheiro CCG, Tanikawa DYS, et al. Mesenchymal stem cells from human exfoliated deciduous teeth and the orbicularis oris muscle: how do they behave when exposed to a proinflammatory stimulus[J]. Stem Cells Int, 2020, 2020: 3670412. |
60 | Yalvaç ME, Yarat A, Mercan D, et al. Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tu-ning micro-environment[J]. Brain Behav Immun, 2013, 32: 122-130. |
61 | 王浩, 周泽楷, 隋秉东, 等. 基于单细胞测序分析颌骨和长骨间充质干细胞特性差异[J]. 中华口腔医学杂志, 2024, 59(3): 247-254. |
Wang H, Zhou ZK, Sui BD, et al. Analysis of the differences in the characteristics of mesenchymal stem cells derived from jaw and long bones based on single-cell RNA-sequencing[J]. Chin J Stomatol, 2024, 59(3): 247-254. | |
62 | Lloyd B, Tee BC, Headley C, et al. Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells[J]. Arch Oral Biol, 2017, 77: 1-11. |
63 | Pu Y, Wang M, Hong Y, et al. Adiponectin promotes human jaw bone marrow mesenchymal stem cell chemotaxis via CXCL1 and CXCL8[J]. J Cell Mol Med, 2017, 21(7): 1411-1419. |
64 | Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 102. |
[1] | 李天元,朱彤欣,柳庆,董迎春,陈斌. 间充质干细胞用于牙周再生临床疗效的系统评价与Meta分析[J]. 国际口腔医学杂志, 2025, 52(3): 296-307. |
[2] | 李晶,康健. 牙周微创手术中再生材料选择及疗效的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 161-168. |
[3] | 陆慧,郑烨新,赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474. |
[4] | 陈三,杨润泽,吴家媛. 经脂多糖和低氧预处理来源的外泌体在组织修复再生中的作用研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 256-264. |
[5] | 张伟杰, 刘向晖, 杨玉娥. 同源盒基因调控先天缺牙的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 374-380. |
[6] | 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602. |
[7] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[8] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[9] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[10] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[11] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[12] | 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488. |
[13] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[14] | 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397. |
[15] | 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204. |
|