国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 467-474.doi: 10.7518/gjkq.2024064

• 综述 • 上一篇    

牙源性间充质干细胞外泌体在牙髓再生中的作用机制

陆慧(),郑烨新,赵玮()   

  1. 中山大学光华口腔医学院·附属口腔医院儿童口腔科 广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2023-10-26 修回日期:2024-02-26 出版日期:2024-07-01 发布日期:2024-06-24
  • 通讯作者: 赵玮
  • 作者简介:陆慧,医师,博士,Email:luhui7@mail2.sysu.edu.cn
  • 基金资助:
    广东省自然科学基金(2023A1515012554)

Effects and mechanism of exosomes derived from dental mesenchymal stem cells on dental pulp regeneration

Hui Lu(),Yexin Zheng,Wei Zhao()   

  1. Dept. of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, ChinaSupported byFoundation:Natural Science Foundation of Guangdong Province (2023A1515012554 )
  • Received:2023-10-26 Revised:2024-02-26 Online:2024-07-01 Published:2024-06-24
  • Contact: Wei Zhao

摘要:

牙髓再生是一种基于组织工程治疗牙髓坏死的新策略,应用种子细胞结合支架和生长因子,实现牙本质、血管和神经的新生。外泌体是一类直径约为30~150 nm的细胞外囊泡,在调控细胞间信息和物质传递中发挥重要作用。2016年以来,牙源性间充质干细胞分泌的外泌体因其在牙髓组织再生领域展现出的巨大潜力而备受瞩目。本文介绍了牙源性间充质干细胞来源外泌体的种类和培养环境,并对牙源性间充质干细胞外泌体调控细胞成牙本质向分化、血管生成、神经再生和成骨向分化的作用和机制作一综述。

关键词: 外泌体, 牙髓再生, 牙源性间充质干细胞

Abstract:

Pulp regeneration is a new strategy for pulp necrosis treatment based on tissue engineering. Seed cells combined with scaffolds and growth factors are used to regenerate dentin, blood vessels, and nerves. As extracellular vesicles with a diameter of approximately 30~150 nm, exosomes play an important role in the transmission of regulatory information between cells. In recent years, exosomes derived from dental mesenchymal stem cells have attracted attention because of their great potential in pulp regeneration. In this article, the species and culture environment of exosomes derived from dental mesenchymal stem cells were introduced. The effect and mechanism of exosomes derived from dental mesenchymal stem cells in regulating odontogenic differentiation, angiogenesis, nerve regeneration, and osteoblastic differentiation were also reviewed.

Key words: exosome, pulp regeneration, dental mesenchymal stem cells

中图分类号: 

  • R781.3

《国际口腔医学杂志》入编《中文核心期刊要目总览》2023年版(第10版)"

1 Ivica A, Zehnder M, Weber FE. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in regenerative endodontics[J]. Eur Cell Mater, 2021, 41: 233-244.
2 陈彦, 杨雪婷, 马悦, 等. 基于外泌体的牙髓再生策略[J]. 中华口腔医学杂志, 2021, 56(7): 709-714.
Chen Y, Yang XT, Ma Y, et al. Exosomes-based strategies for dental pulp regeneration[J]. Chin J Stomatol, 2021, 56(7):709-714.
3 Lai HB, Li JQ, Kou XX, et al. Extracellular vesicles for dental pulp and periodontal regeneration[J]. Pharmaceutics, 2023, 15(1): 282.
4 Marote A, Teixeira FG, Mendes-Pinheiro B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[J]. Front Pharmacol, 2016, 7: 231.
5 Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
6 中国抗癌协会肿瘤标志专业委员会外泌体技术专家委员会. 外泌体研究、转化和临床应用专家共识[J]. 转化医学杂志, 2018, 7(6): 321-325.
Committee of Exosome Society of Tumor Markers, Chinese Anti-Cancer Association. Consensus statement on exosomes in translational research and cli-nical practice[J]. Transl Med J, 2018, 7(6): 321-325.
7 Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404.
8 Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
9 Jing H, He XM, Zheng JH. Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018, 196: 1-16.
10 Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115.
11 Liu S, Wu X, Chandra S, et al. Extracellular vesicles: emerging tools as therapeutic agent carriers[J]. Acta Pharm Sin B, 2022, 12(10): 3822-3842.
12 Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci USA, 2000, 97(25): 13625-13630.
13 Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. PNAS, 2003, 100(10): 5807-5812.
14 Cantore S, Ballini A, de Vito D, et al. Characterization of human apical papilla-derived stem cells[J]. J Biol Regul Homeost Agents, 2017, 31(4): 901-910.
15 Zhang SC, Yang Y, Jia SX, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue[J]. Theranostics, 2020, 10(13): 5914-5931.
16 Hu XL, Zhong YQ, Kong YY, et al. Lineage-speci-fic exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs[J]. Stem Cell Res Ther, 2019, 10(1): 170.
17 Xie LK, Guan Z, Zhang MZ, et al. Exosomal circLPAR1 promoted osteogenic differentiation of homotypic dental pulp stem cells by competitively binding to hsa-miR-31[J]. Biomed Res Int, 2020, 2020: 6319395.
18 Huang XY, Qiu W, Pan YH, et al. Exosomes from LPS-stimulated hDPSCs activated the angiogenic potential of HUVECs in vitro [J]. Stem Cells Int, 2021, 2021: 6685307.
19 Li BY, Xian XH, Lin XW, et al. Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes[J]. Biomolecules, 2022, 12(4): 575.
20 Tian J, Chen WY, Xiong YH, et al. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory os-teolysis by modulating macrophage polarization and osteoclastogenesis[J]. Bioact Mater, 2023, 22: 326-342.
21 Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates decid-uous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223.
22 Wu ML, Liu XM, Li ZH, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling[J]. Cell Prolif, 2021, 54(7): e13074.
23 Chen Y, Ma Y, Yang XT, et al. The application of pulp tissue derived-exosomes in pulp regeneration: a novel cell-homing approach[J]. Int J Nanomedicine, 2022, 17: 465-476.
24 陈婷, 李心竹, 徐稳安. 外泌体和细胞因子促进牙髓血管生成的作用与调控机制[J]. 中国组织工程研究, 2020, 24(14): 2263-2270.
Chen T, Li XZ, Xu WA. Role of angiogenesis in dental pulp regeneration: exosomes and angiogenic factors[J]. Chin J Tissue Eng Res, 2020, 24(14): 2263-2270.
25 Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013, 92(11): 970-975.
26 李佩, 林凌, 赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
Li P, Lin L, Zhao W. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue[J]. Int J Stomatol, 2022, 49(4): 483-488.
27 Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10(455): eaaf3227.
28 Yu S, Chen H, Gao B. Potential therapeutic effects of exosomes in regenerative endodontics[J]. Arch Oral Biol, 2020, 120: 104946.
29 Zhuang XY, Ji LL, Jiang H, et al. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific dentinogenesis[J]. Stem Cells Int, 2020, 2020: 5816723.
30 Yang S, Liu Q, Chen S, et al. Extracellular vesicles delivering nuclear factor Ⅰ/C for hard tissue engineering: treatment of apical periodontitis and dentin regeneration[J]. J Tissue Eng, 2022, 13: 20417314-221084095.
31 Ribeiro MF, Zhu HY, Millard RW, et al. Exosomes function in pro- and anti-angiogenesis[J]. Curr Angiogenes, 2013, 2(1): 54-59.
32 柳鑫, 肖燕, 江川, 等. 牙髓干细胞来源外泌体诱导内皮细胞血管生成能力的研究[J]. 牙体牙髓牙周病学杂志, 2018, 28(4): 187-196.
Liu X, Xiao Y, Jiang C, et al. Exosomes from dental pulp stem cells enhance the angiogenesis of endothelial cells[J]. China J Conserv Dent, 2018, 28(4): 187-196.
33 Xian XH, Gong QM, Li C, et al. Exosomes with highly angiogenic potential for possible use in pulp regeneration[J]. J Endod, 2018, 44(5): 751-758.
34 Wu JY, Chen LL, Wang RF, et al. Exosomes secre-ted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis[J]. ACS Biomater Sci Eng, 2019, 5(7): 3561-3571.
35 Liu Y, Zhuang XY, Yu S, et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization[J]. Stem Cell Res Ther, 2021, 12(1): 76.
36 Liu PP, Zhang Q, Mi J, et al. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of miR-100-5p and miR-1246[J]. Stem Cell Res Ther, 2022, 13(1): 89.
37 Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110.
38 Liu PP, Qin LH, Liu C, et al. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated teeth enhance angiogenesis via the transfer of let-7f-5p and miR-210-3p[J]. Front Cell Dev Biol, 2022, 10: 879877.
39 Gonzalez-King H, García NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J]. Stem Cells, 2017, 35(7): 1747-1759.
40 Stanko P, Altanerova U, Jakubechova J, et al. Dental mesenchymal stem/stromal cells and their exosomes[J]. Stem Cells Int, 2018, 2018: 8973613.
41 Nuti N, Corallo C, Chan BM, et al. Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev Rep, 2016, 12(5): 511-523.
42 Terunuma A, Yoshioka Y, Sekine T, et al. Extracellular vesicles from mesenchymal stem cells of dental pulp and adipose tissue display distinct transcriptomic characteristics suggestive of potential therapeutic targets[J]. J Stem Cells Regen Med, 2021, 17(2): 56-60.
43 Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, et al. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis[J]. Cytotherapy, 2015, 17(7): 932-939.
44 Guo J, Zhou F, Liu Z, et al. Exosome-shuttled mitochondrial transcription factor A mRNA promotes the osteogenesis of dental pulp stem cells through mitochondrial oxidative phosphorylation activation[J]. Cell Prolif, 2022, 55(12): e13324.
45 Swanson WB, Zhang Z, Xiu KM, et al. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation[J]. Acta Biomater, 2020, 118: 215-232.
46 Lee AE, Choi JG, Shi SH, et al. DPSC-derived extracellular vesicles promote rat jawbone regeneration[J]. J Dent Res, 2023, 102(3): 313-321.
47 Shimizu Y, Takeda-Kawaguchi T, Kuroda I, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis[J]. J Periodontal Res, 2022, 57(1): 162-172.
48 Wei JZ, Song YQ, Du ZH, et al. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteoge-nesis[J]. J Mol Histol, 2020, 51(4): 455-466.
49 Li L, Ge JP. Exosome‑derived lncRNA‑Ankrd26 promotes dental pulp restoration by regulating miR‑150‑TLR4 signaling[J]. Mol Med Rep, 2022, 25(5): 152.
50 Wang MH, Li J, Ye YY, et al. SHED-derived exosomes improve the repair capacity and osteogenesis potential of hPDLCs[J]. Oral Dis, 2023, 29(4): 1692-1705.
51 Sonoda S, Murata S, Nishida K, et al. Extracellular vesicles from deciduous pulp stem cells recover bone loss by regulating telomerase activity in an osteoporosis mouse model[J]. Stem Cell Res Ther, 2020, 11(1): 296.
52 Wang MH, Li J, Ye YY, et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro [J]. Differentiation, 2020, 111: 1-11.
[1] 陈三,杨润泽,吴家媛. 经脂多糖和低氧预处理来源的外泌体在组织修复再生中的作用研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 256-264.
[2] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[3] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[4] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[5] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[6] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[7] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[8] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[9] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[10] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[11] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[12] 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672.
[13] 雷期音, 陈柯. 年轻恒牙牙髓再生的临床应用进展[J]. 国际口腔医学杂志, 2017, 44(3): 267-272.
[14] 吴佳梦, 王效英. 外泌体与口腔疾病关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(3): 336-339.
[15] 杨懋彬1 曾倩2. 再生牙髓病学——牙髓再生的新方向[J]. 国际口腔医学杂志, 2016, 43(5): 495-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!