国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (5): 655-661.doi: 10.7518/gjkq.2025084

• 综述 • 上一篇    下一篇

牙源性间充质干细胞来源细胞外囊泡的免疫调节作用

王博群(),陆慧,穆晴,赵玮()   

  1. 中山大学光华口腔医学院·附属口腔医院儿童口腔科广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2024-07-11 修回日期:2025-06-29 出版日期:2025-09-01 发布日期:2025-08-27
  • 通讯作者: 赵玮
  • 作者简介:王博群,学士,Email:wangbq9@mail2.sysu.edu.cn
  • 基金资助:
    广东省自然科学基金(2023A1515012554);中山大学大学生创新创业计划(20240491)

Immune regulation mediated by extracellular vesicles from dental-derived mesenchymal stem cells

Boqun Wang(),Hui Lu,Qing Mu,Wei Zhao()   

  1. Dept. of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2024-07-11 Revised:2025-06-29 Online:2025-09-01 Published:2025-08-27
  • Contact: Wei Zhao
  • Supported by:
    Natural Science Foundation of Guangdong Province(2023A1515012554);Student Innovation and Entrepreneurship Training Program of Sun Yat-sen University(20240491)

摘要:

干细胞产生的细胞外囊泡(EV)可携带多种具有生物活性的物质,是细胞间进行信息交流的重要介质。相较于其他组织来源的干细胞,牙源性间充质干细胞(DMSC)有着诸多独特的优势,其分泌的EV能够通过调控免疫细胞的活性及局部组织细胞的炎症水平,在创伤、感染等因素导致的疾病中起到免疫调节的作用,可应用于组织修复与再生医学领域。本文拟从免疫调节的角度出发,对DMSC来源的EV在口腔及其他疾病中的调节作用展开综述。

关键词: 细胞外囊泡, 牙源性间充质干细胞, 免疫调节

Abstract:

Extracellular vesicles (EVs) released by stem cells carry various bioactive molecules that are essential for mediating intercellular communication. Compared with other tissues-derived stem cells, mesenchymal stem cells derived from dental tissues possess several unique advantages, including accessibility, proliferative capacity, and immunomodulatory potential. EVs secreted by these mesenchymal stem cells have been shown to influence immune cell function and modulate inflammatory responses within local cellular and tissue environments. These immunoregulatory properties are particularly relevant in the context of inflammation-related diseases resulting from trauma, infection, and other pathological stimuli, highlighting the potential of these EVs in tissue repair and regenerative medicine. This review focuses on the immunomodulatory roles of EVs from mesenchymal stem cells derived from dental tissues and their regulatory functions in oral and systemic inflammatory diseases.

Key words: extracellular vesicle, dental-derived mesenchymal stem cell, immune regulation

中图分类号: 

  • Q254
[1] Ji LJ, Bao LL, Gu ZF, et al. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells[J]. Immunol Res, 2019, 67(4/5): 432-442.
[2] Zarubova J, Hasani-Sadrabadi MM, Dashtimogha-dam E, et al. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration[J]. Adv Healthc Mater, 2022, 11(12): e2102593.
[3] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
[4] Miura M, Gronthos S, Zhao MR, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
[5] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human pe-riodontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
[6] Sonoyama W, Liu Y, Fang DJ, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1(1): e79.
[7] Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth[J]. Matrix Biol, 2005, 24(2): 155-165.
[8] Zhang QZ, Shi SH, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183(12): 7787-7798.
[9] Lai HB, Li JQ, Kou XX, et al. Extracellular vesicles for dental pulp and periodontal regeneration[J]. Pharmaceutics, 2023, 15(1): 282.
[10] Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Mi-nimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404.
[11] 曾涵柔, 李长芳, 王可境, 等. 根尖牙乳头干细胞来源凋亡囊泡对巨噬细胞糖酵解相关酶的表达及炎症表型影响的初探研究[J]. 口腔生物医学, 2024, 15(1): 6-11.
Zeng HR, Li CF, Wang KJ, et al. ApoVs derived from SCAP modulate the inflammatory phenotype of macrophages by regulating the expression of glycolysis-associated enzymes[J]. Oral Biomed, 2024, 15(1): 6-11.
[12] Wen J, Creaven D, Luan XS, et al. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies’ unique anti-inflammatory potential[J]. J Transl Med, 2023, 21(1): 478.
[13] 陆慧, 郑烨新, 赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474.
Lu H, Zheng YX, Zhao W. Effects and mechanism of exosomes derived from dental mesenchymal stem cells on dental pulp regeneration[J]. Int J Stomatol, 2024, 51(4): 467-474.
[14] Tian XH, Wei WM, Cao Y, et al. Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis[J]. J Cell Mol Med, 2022, 26(3): 693-708.
[15] Della Rocca Y, Diomede F, Konstantinidou F, et al. Protective effect of oral stem cells extracellular vesicles on cardiomyocytes in hypoxia-reperfusion[J]. Front Cell Dev Biol, 2024, 11: 1260019.
[16] Zheng JM, Kong YY, Hu XL, et al. microRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis[J]. Stem Cell Res Ther, 2020, 11(1): 517.
[17] Fallah A, Hosseinzadeh Colagar A, Khosravi A, et al. Exosomes from SHED-MSC regulate polarization and stress oxidative indexes in THP-1 derived M1 macrophages[J]. Arch Biochem Biophys, 2024, 755: 109987.
[18] Yu S, Chen X, Liu Y, et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells[J]. Int Endod J, 2022, 55(5): 517-530.
[19] Zheng Y, Dong C, Yang JL, et al. Exosomal micro-RNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019, 234(11): 20662-20674.
[20] Qiao X, Tang J, Dou L, et al. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats[J]. Int J Nanomedicine, 2023, 18: 4683-4703.
[21] Zeng JJ, He KL, Mai RT, et al. Exosomes from human umbilical cord mesenchymal stem cells and human dental pulp stem cells ameliorate lipopolysaccharide-induced inflammation in human dental pulp stem cells[J]. Arch Oral Biol, 2022, 138: 105411.
[22] Tian J, Chen WY, Xiong YH, et al. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory os-teolysis by modulating macrophage polarization and osteoclastogenesis[J]. Bioact Mater, 2022, 22: 326-342.
[23] Zhang Y, Chen JY, Fu HJ, et al. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium[J]. Int J Oral Sci, 2021, 13(1): 43.
[24] Zhang TW, Chen ZQ, Zhu MY, et al. Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis[J]. Genes Dis, 2022, 10(4): 1613-1625.
[25] Huang YL, Liu L, Liu Q, et al. Dental follicle cells-derived small extracellular vesicles inhibit pathogenicity of Porphyromonas gingivalis [J]. Oral Dis, 2023, 29(5): 2297-2309.
[26] Pourhajibagher M, Bahador A. Periodontal ligament stem cell-derived exosome-loaded Emodin media-ted antimicrobial photodynamic therapy against ca-riogenic bacteria[J]. BMC Oral Health, 2024, 24(1): 311.
[27] Nakao Y, Fukuda T, Zhang QZ, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122: 306-324.
[28] Cui SY, Zhang ZJ, Cheng C, et al. Small extracellular vesicles from periodontal ligament stem cells primed by lipopolysaccharide regulate macrophage M1 polarization via miR-433-3p targeting TLR2/TLR4/NF-κB[J]. Inflammation, 2023, 46(5): 1849-1858.
[29] Wang YZ, Zhang XG, Wang JJ, et al. Inflammatory periodontal ligament stem cells drive M1 macrophage polarization via exosomal miR-143-3p-me-diated regulation of PI3K/AKT/NF-κB signaling[J]. Stem Cells, 2023, 41(2): 184-199.
[30] Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a ma-crophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126.
[31] 应乔, 俞懿强, 苏俭生. 负载脱落乳牙干细胞外泌体的透明质酸可注射水凝胶的制备及其对小鼠牙周炎抗炎成骨的研究[J]. 口腔颌面外科杂志, 2023, 33(5): 292-297.
Ying Q, Yu YQ, Su JS. Preparation of hyaluronic a-cid injectable hydrogel with SHED-derived exosomes and its antiinflammatory and osteogenic effects on periodontitis: an experimental study in the rat[J]. J Oral Maxillofac Surg, 2023, 33(5): 292-297.
[32] Huang YL, Li MJ, Liu Q, et al. Small extracellular vesicles derived from lipopolysaccharide-preconditioned dental follicle cells inhibit cell apoptosis and alveolar bone loss in periodontitis[J]. Arch Oral Biol, 2024, 162: 105964.
[33] Hayashi C, Fukuda T, Kawakami K, et al. miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated regulation of ER stress[J]. Front Cell Dev Biol, 2022, 10: 1061216.
[34] Shi WW, Guo SJ, Liu L, et al. Small extracellular vesicles from lipopolysaccharide-preconditioned de-ntal follicle cells promote periodontal regeneration in an inflammatory microenvironment[J]. ACS Biomater Sci Eng, 2020, 6(10): 5797-5810.
[35] Zheng YX, Lu H, Mu Q, et al. Effects of sEV derived from SHED and DPSC on the proliferation, migration and osteogenesis of PDLSC[J]. Regen Ther, 2023, 24: 489-498.
[36] 陈彦, 杨雪婷, 马悦, 等. 基于外泌体的牙髓再生策略[J]. 中华口腔医学杂志, 2021, 56(7): 709-714.
Chen Y, Yang XT, Ma Y, et al. Exosomes-based strategies for dental pulp regeneration[J]. Chin J Stomatol, 2021, 56(7): 709-714.
[37] Lu H, Mu Q, Ku WL, et al. Functional extracellular vesicles from SHEDs combined with gelatin me-thacryloyl promote the odontogenic differentiation of DPSCs for pulp regeneration[J]. J Nanobiotechnology, 2024, 22(1): 265.
[38] Eren Belgin E, Genç D, Tekin L, et al. Anti-inflammatory effect of dental pulpa mesenchymal stem cell exosomes loaded mucoadhesive hydrogel on mice with dental nickel hypersensitivity[J]. Macromol Biosci, 2024, 24(6): e2300352.
[39] Kou XX, Xu XT, Chen C, et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10(432): eaai8524.
[40] Jonavičė U, Tunaitis V, Kriaučiūnaitė K, et al. Extracellular vesicles can act as a potent immunomodulators of human microglial cells[J]. J Tissue Eng Regen Med, 2019, 13(2): 309-318.
[41] Jonavičė U, Romenskaja D, Kriaučiūnaitė K, et al. Extracellular vesicles from human teeth stem cells trigger ATP release and promote migration of human microglia through P2X4 receptor/MFG-E8-dependent mechanisms[J]. Int J Mol Sci, 2021, 22(20): 10970.
[42] Li S, Luo LH, He Y, et al. Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response[J]. Cell Prolif, 2021, 54(8): e13093.
[43] Liu C, Hu FQ, Jiao GL, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage pola-rization through the ROS-MAPK-NFκB P65 signa-ling pathway after spinal cord injury[J]. J Nanobiotechnology, 2022, 20(1): 65.
[44] Gratpain V, Loriot A, Bottemanne P, et al. Influence of a pro-inflammatory stimulus on the miRNA and lipid content of human dental stem cell-derived extracellular vesicles and their impact on microglial activation[J]. Heliyon, 2024, 10(5): e27025.
[45] Luo P, Jiang C, Ji P, et al. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR[J]. Stem Cell Res Ther, 2019, 10(1): 216.
[46] Lin TJ, Wu N, Wang LH, et al. Inhibition of chondrocyte apoptosis in a rat model of osteoarthritis by exosomes derived from miR-140-5p-overexpressing human dental pulp stem cells[J]. Int J Mol Med, 2021, 47(3): 7.
[47] Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, et al. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction[J]. Inflamm Regen, 2024, 44(1): 25.
[48] Pivoraitė U, Jarmalavičiūtė A, Tunaitis V, et al. Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice[J]. Inflammation, 2015, 38(5): 1933-1941.
[49] Xie YY, Yu L, Cheng ZL, et al. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy[J]. J Nanobiotechnology, 2022, 20(1): 239.
[50] Tang DQ, Liu MQ, Gao SH, et al. Thermally engineered MSC-derived extracellular vesicles ameliorate colitis in mice by restoring the imbalanced Th17/Treg cell ratio[J]. Int Immunopharmacol, 2023, 125(Pt A): 111077.
[1] 伍行,刘玉平,张伊钒,夏郁葱,李照禾,易小炜,夏鸿,丁文文. 原花青素对口腔疾病调控机制和防治的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 644-654.
[2] 高雪钰,刘玉红,赵彦涛,闫钧. 牙颌干细胞与免疫细胞的交互调控作用[J]. 国际口腔医学杂志, 2025, 52(4): 534-543.
[3] 陆慧,郑烨新,赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474.
[4] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[5] 张湘宜, 刘亚丽. 牙源性干细胞的免疫调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 276-279.
[6] 邬腊梅 杨宏宇. 自然杀伤细胞2族成员D及其配体在口腔肿瘤中的免疫调节作用[J]. 国际口腔医学杂志, 2013, 40(5): 695-697.
[7] 洪丽莉 孔倩颖 韦曦. Toll样受体介导的细胞内信号通路及其免疫调节功能[J]. 国际口腔医学杂志, 2013, 40(1): 76-79.
[8] 郭烨综述 赵蕾,吴亚菲审校. 免疫调节治疗牙周炎的研究进展[J]. 国际口腔医学杂志, 2010, 37(5): 555-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李军,徐平. 视黄酸对人牙周膜细胞和牙龈成纤维细胞碱性磷酸酶活性和组织非特异性碱性磷酸酶基因表达的影响[J]. 国际口腔医学杂志, 2000, 27(04): .
[2] 杨溪综述 郭伟, 张陈平审校. 头颈部黏膜恶性黑色素瘤的临床分期[J]. 国际口腔医学杂志, 2010, 37(02): 192 -192~195 .
[3] 黄湘雅,凌均棨,. 三维影像重建技术在根管形态研究中的应用[J]. 国际口腔医学杂志, 2006, 33(05): 352 -354 .
[4] 郑庆华综述 李文, 黄定明审校. 恒牙根管弯曲的解剖学特征[J]. 国际口腔医学杂志, 2010, 37(3): 317 -317~319 .
[5] 吴卫锋综述 郭淑娟 吴亚菲审校. 成牙骨质细胞的研究进展[J]. 国际口腔医学杂志, 2011, 38(1): 95 -97 .
[6] 黄龙 翦新春. 槟榔致癌物质与口腔癌[J]. 国际口腔医学杂志, 2014, 41(1): 102 -107 .
[7] 周颖 姜毅华. 口腔鳞状细胞癌和癌旁组织的基因表达分析[J]. 国际口腔医学杂志, 2015, 42(3): 310 -313 .
[8] 王丽丽,李娜,李祥伟,孙宏晨. 粪肠球菌与复发性根尖周炎的相关性及其机制[J]. 国际口腔医学杂志, 2015, 42(2): 199 -202 .
[9] 丁烨,任静宜,于洪强,周延民,于维先. 病原相关分子模式和损伤相关分子模式在免疫炎症反应中的作用[J]. 国际口腔医学杂志, 2016, 43(2): 172 -176 .
[10] 王冏珂,张雪峰,陈谦明,曾昕. 口腔黏膜寻常型天疱疮的口服糖皮质激素治疗:剂量与疗程[J]. 国际口腔医学杂志, 2017, 44(1): 69 -74 .