国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3): 288-295.doi: 10.7518/gjkq.2024044
Zaimu Yang1(),Pei Cao1,Zhenhua Liu2,Qingxian Luan1()
摘要:
目的 血浆无细胞线粒体外线粒体DNA(cf-exmtDNA)具有促炎潜能,本文探讨血浆cf-exmtDNA与牙周炎临床指标的相关性。 方法 纳入18~45岁受试者78人,其中牙周健康者11人,牙龈炎患者11人,牙周炎患者56人。检查并记录基线牙周指标、年龄、性别、体质指数(BMI)和空腹血糖(FBG)。取4 mL抗凝静脉血,采用二次离心法提取其中cf-exmtDNA,使用实时荧光定量聚合酶链式反应检测cf-exmtDNA拷贝数。比较不同牙周炎症状态组血浆cf-exmtDNA水平,并对血浆cf-exmtDNA与平均探诊深度(mPD)、平均附着水平(mCAL)、平均出血指数(mBI)、平均菌斑指数(mPLI)、年龄、FBG、BMI等指标进行相关性分析以及多重线性回归分析。 结果 牙周炎组血浆cf-exmtDNA水平显著高于牙周健康组(P=0.042);样本整体血浆cf-exmtDNA水平与年龄(P=0.023)、mPD(P<0.001)、mCAL(P=0.006)、mBI(P=0.026)呈正相关关系;多重回归分析中,血浆cf-exmtDNA水平主要取决于mPD。 结论 在18~45岁人群中,牙周炎患者血浆cf-exmtDNA水平较牙周健康者显著升高,血浆cf-exmtDNA水平与年龄、mPD、mCAL、mBI呈正相关关系。
中图分类号:
1 | Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy[J]. Perio-dontol 2000, 2020, 84(1): 14-34. |
2 | Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-mediated chronic inflammation in patients with type 2 diabetes[J]. Cells, 2019, 8(4): 328. |
3 | Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases[J]. Front Immunol, 2019, 10: 502. |
4 | Aswani A, Manson J, Itagaki K, et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage[J]. Front Immunol, 2018, 9: 891. |
5 | Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107. |
6 | Nasi M, Bianchini E, de Biasi S, et al. Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis[J]. J Neuroimmunol, 2020, 338: 577107. |
7 | Singel KL, Grzankowski KS, ANMNHKhan, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer[J]. Br J Cancer, 2019, 120(2): 207-217. |
8 | Ward GA, McGraw KL, Abbas-Aghababazadeh F, et al. Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes[J]. Blood Adv, 2021, 5(8): 2216-2228. |
9 | Pinti M, Cevenini E, Nasi M, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”[J]. Eur J Immunol, 2014, 44(5): 1552-1562. |
10 | Trumpff C, Marsland AL, Basualto-Alarcón C, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA[J]. Psychoneuroendocrinology, 2019, 106: 268-276. |
11 | Trumpff C, Michelson J, Lagranha CJ, et al. Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations[J]. Mitochondrion, 2021, 59: 225-245. |
12 | Trumpff C, Rausser S, Haahr R, et al. Dynamic behavior of cell-free mitochondrial DNA in human saliva[J]. Psychoneuroendocrinology, 2022, 143: 105852. |
13 | Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria[J]. FASEB J, 2020, 34(3): 3616-3630. |
14 |
Roch B, Pisareva E, Sanchez C, et al. Plasma derived cell-free mitochondrial DNA originates mainly from circulating cell-free mitochondria[J]. bio Rxiv, 2021. doi: 10.1101/2021.09.03.458846 .
doi: 10.1101/2021.09.03.458846 |
15 | Stephens OR, Grant D, Frimel M, et al. Characteri-zation and origins of cell-free mitochondria in healthy murine and human blood[J]. Mitochondrion, 2020, 54: 102-112. |
16 | Lázaro-Ibáñez E, Lässer C, Shelke GV, et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology[J]. J Extracell Vesicles, 2019, 8(1): 1656993. |
17 | Szilágyi M, Pös O, Márton É, et al. Circulating cell-free nucleic acids: Main characteristics and clinical application[J]. Int J Mol Sci, 2020, 21(18): 6827. |
18 | Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165761. |
19 | Liu DL, Gao YS, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization[J]. Signal Transduct Target Ther, 2021, 6(1): 65. |
20 | Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β[J]. J Neuroinflammation, 2018, 15(1): 239. |
21 | de Gaetano A, Solodka K, Zanini G, et al. Molecular mechanisms of mtDNA-mediated inflammation[J]. Cells, 2021, 10(11): 2898. |
22 | Liu J, Wang YF, Shi Q, et al. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway[J]. Oxid Med Cell Longev, 2022, 2022: 1000213. |
23 | Masi S, Orlandi M, Parkar M, et al. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type Ⅱ diabetes and perio-dontitis: a randomised controlled clinical trial[J]. Int J Cardiol, 2018, 271: 263-268. |
24 | Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017, 44(5): 463-471. |
25 | Konečná B, Gaál Kovalčíková A, Pančíková A, et al. Salivary extracellular DNA and DNase activity in periodontitis[J]. Appl Sci, 2020, 10(21): 7490. |
26 | 吴圣贤, 王成祥. 临床研究样本含量估算基础[M]. 北京: 人民卫生出版社, 2008: 24-26. |
Wu SX, Wang CX. Sample size calculation basics for clinical research[M]. Beijing: People’s Medical Publishing House, 2008: 24-26. | |
27 | Papapanou PN, Sanz M, Buduneli N, et al. Perio-dontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Perio-dontal and Peri-Implant Diseases and Conditions[J]. J Periodontol, 2018, 89(): S173-S182. |
28 | Lang NP, Bartold PM. Periodontal health[J]. J Perio-dontol, 2018, 89(): S9-S16. |
29 | Hummel EM, Hessas E, Müller S, et al. Cell-free DNA release under psychosocial and physical stress conditions[J]. Transl Psychiatry, 2018, 8(1): 236. |
30 | Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clin Chem, 2009, 55(4): 611-622. |
31 | Lumley T, Diehr P, Emerson S, et al. The importance of the normality assumption in large public health data sets[J]. Annu Rev Public Health, 2002, 23: 151-169. |
32 | Brinkmann V. Neutrophil extracellular traps in the second decade[J]. J Innate Immun, 2018, 10(5/6): 414-421. |
33 | Cataño Cañizales YG, Uresti Rivera EE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes[J]. Iran J Immunol, 2018, 15(2): 142-155. |
34 | Silzer T, Barber R, Sun J, et al. Circulating mitochondrial DNA: new indices of type 2 diabetes-related cognitive impairment in Mexican Americans[J]. PLoS One, 2019, 14(3): e0213527. |
35 | Fatima T, Khurshid Z, Rehman A, et al. Gingival crevicular fluid (GCF): a diagnostic tool for the detection of periodontal health and diseases[J]. Molecules, 2021, 26(5): 1208. |
[1] | 马瑜鸿,赵蕾. 微创非手术牙周治疗技术的临床研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 227-232. |
[2] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[3] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[6] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[9] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[10] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[11] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[12] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[13] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[14] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[15] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
|