国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3): 288-295.doi: 10.7518/gjkq.2024044

• 论著 • 上一篇    下一篇

血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究

杨再目1(),曹沛1,刘振华2,栾庆先1()   

  1. 1.北京大学口腔医学院·口腔医院牙周科;国家口腔医学中心 国家口腔疾病临床医学研究中心;口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室 北京 100081
    2.北京市中关村医院口腔科 北京 100190
  • 收稿日期:2023-08-16 修回日期:2024-02-01 出版日期:2024-05-01 发布日期:2024-05-06
  • 通讯作者: 栾庆先
  • 作者简介:杨再目,医师,博士,Email:yangzaimu@pku.org.cn

Correlation study of plasma cell-free extra-mitochondrial mitochondria DNA and periodontitis clinical parameters

Zaimu Yang1(),Pei Cao1,Zhenhua Liu2,Qingxian Luan1()   

  1. 1.Dept. of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2.Dept. of Stomatology, Beijing Zhongguancun Hospital, Beijing 100190, China
  • Received:2023-08-16 Revised:2024-02-01 Online:2024-05-01 Published:2024-05-06
  • Contact: Qingxian Luan

摘要:

目的 血浆无细胞线粒体外线粒体DNA(cf-exmtDNA)具有促炎潜能,本文探讨血浆cf-exmtDNA与牙周炎临床指标的相关性。 方法 纳入18~45岁受试者78人,其中牙周健康者11人,牙龈炎患者11人,牙周炎患者56人。检查并记录基线牙周指标、年龄、性别、体质指数(BMI)和空腹血糖(FBG)。取4 mL抗凝静脉血,采用二次离心法提取其中cf-exmtDNA,使用实时荧光定量聚合酶链式反应检测cf-exmtDNA拷贝数。比较不同牙周炎症状态组血浆cf-exmtDNA水平,并对血浆cf-exmtDNA与平均探诊深度(mPD)、平均附着水平(mCAL)、平均出血指数(mBI)、平均菌斑指数(mPLI)、年龄、FBG、BMI等指标进行相关性分析以及多重线性回归分析。 结果 牙周炎组血浆cf-exmtDNA水平显著高于牙周健康组(P=0.042);样本整体血浆cf-exmtDNA水平与年龄(P=0.023)、mPD(P<0.001)、mCAL(P=0.006)、mBI(P=0.026)呈正相关关系;多重回归分析中,血浆cf-exmtDNA水平主要取决于mPD。 结论 在18~45岁人群中,牙周炎患者血浆cf-exmtDNA水平较牙周健康者显著升高,血浆cf-exmtDNA水平与年龄、mPD、mCAL、mBI呈正相关关系。

关键词: 牙周炎, 无细胞DNA, 线粒体DNA, 横断面研究, 牙周临床指标

Abstract:

Objective Plasma cell-free extra-cellular mitochondrial DNA (cf-exmtDNA) shows pro-inflammatory potential. This study aims to investigate the correlation between cf-exmtDNA and baseline periodontitis clinical parameters in patients in general health. Methods A total of 78 participants aged 18-45 years were enrolled: 11 periodontal healthy volunteers, 11 patients with gingivitis, and 56 patients with periodontitis. Baseline periodontal index, age, gender, body mass index (BMI), and baseline fasting blood glucose (FBG) were examined and recorded. Anticoagulated venous blood (4 mL) was collected, and cf-mtDNA was extracted by secondary centrifugation. cf-exmtDNA concentration was measured through real-time quantitative polymerase chain reaction. Different states of periodontal inflammation were compared in terms of plasma cf-exmtDNA copy number, and the relationship among plasma cf-exmtDNA, mean probing depth (mPD), mean clinical attachment level (mCAL), mean bleeding index (mBI), mean plaque index, age, FBG, and BMI were examined through correlation and multiple linear regression analyses. Results Patients with periodontitis had significantly higher plasma cf-exmtDNA levels than the healthy volunteers (P=0.042). The overall plasma cf-exmtDNA was significantly positively correlated with age (P=0.023), mPD (P<0.001), mCAL (P=0.006), and mBI (P=0.026). Multiple regression analysis showed that plasma cf-exmtDNA level was significantly dependent on mPD. Conclusion In the general population aged 18–45, patients with periodontitis had significantly higher plasma cf-exmt-DNA level than the healthy volunteers, and plasma cf-exmtDNA concentration was significantly positively correlated with age, mPD, mCAL, and mBI.

Key words: periodontitis, cell-free DNA, mitochondrial DNA, cross-sectional study, periodontal clinical parameters

中图分类号: 

  • R781.4

表 1

qPCR的程序设定"

程序温度/℃时长
保持期502 min
预变性9510 min
PCR期(40 个循环)变性9510 s
退火6015 s
延伸a7230 s
熔解曲线期

表 2

引物序列"

基因方向序列
ND1正向5’-CACACTAGCAGAGACCAACCGAAC-3’
反向5’-CGGCTATGAAGAATAGGGCGAAGG-3’

表 3

牙周健康、牙龈炎、牙周炎组基线特征"

纳入指标组别
牙周健康组(n=11)牙周炎组(n=56)
男/女4/78/330/26
年龄/岁25(23,29)26(24,30)32(26,35)
空腹血糖/(mmol/L)4.80±0.295.05±0.064.96±0.17
体质指数/(kg/m220.89±4.7422.22±6.8221.27±4.73
mPD/mm2.16(2.11,2.39)2.35(2.10,2.40)2.97(2.73,3.67)
mCAL/mm0.03(0.00,0.03)0.03(0.00,0.05)3.07(2.77,3.80)
mBI1.32±0.191.66±0.292.53±0.34
mPLI1.15±0.241.40±0.621.55±0.25

图1

血浆cf-exmtDNA与牙周炎症状态和临床指标的关系A:血浆cf-exmtDNA拷贝数;B、C、D、E分别为血浆cf-exmtDNA与mPD、mCAL、mBI、年龄的Pearson相关性分析;*:P<0.05;ns:P>0.05。"

表 4

各临床指标与血浆cf-exmtDNA的相关性"

测量指标与血浆cf-exmtDNA的相关系数
rP
牙周指标mPD/mm0.409<0.001
mCAL/mm0.3100.006
mBI0.2520.026
mPLI0.0090.936
全身指标年龄/岁0.2570.023
BMI /(kg/m20.2060.071
FBG/(mmol/L)-0.0290.802

表 5

血浆cf-exmtDNA和牙周临床指标的多重线性回归分析"

多重线性回归模型模型参数B95% CIβtP
血浆cf-exmtDNA常量-1 257.091(-2 090.559,-423.622)-3.0040.004
mPD528.636(258.892,798.380)0.4093.903<0.001
R2adj=0.156(n=78,P<0.001)
mPD常量1.117(0.774,1.459)6.491<0.001
血浆cf-exmtDNA1.73×10-4(0.68×10-4,2.77×10-40.2233.2850.002
mBI0.811(0.662,0.960)0.73710.841<0.001
R2adj=0.667(n=78,P<0.001)
mBI常量-0.223(-0.626,0.180)-1.1030.273
mPD0.672(0.551,0.793)0.73911.056<0.001
mPLI0.310(0.136,0.484)0.2373.5530.001
R2adj=0.674(n=78,P<0.001)

图2

多变量气泡图(左)与mPD的多重线性回归模型(右)"

1 Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy[J]. Perio-dontol 2000, 2020, 84(1): 14-34.
2 Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-mediated chronic inflammation in patients with type 2 diabetes[J]. Cells, 2019, 8(4): 328.
3 Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases[J]. Front Immunol, 2019, 10: 502.
4 Aswani A, Manson J, Itagaki K, et al. Scavenging circulating mitochondrial DNA as a potential therapeutic option for multiple organ dysfunction in trauma hemorrhage[J]. Front Immunol, 2018, 9: 891.
5 Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107.
6 Nasi M, Bianchini E, de Biasi S, et al. Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis[J]. J Neuroimmunol, 2020, 338: 577107.
7 Singel KL, Grzankowski KS, ANMNHKhan, et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer[J]. Br J Cancer, 2019, 120(2): 207-217.
8 Ward GA, McGraw KL, Abbas-Aghababazadeh F, et al. Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes[J]. Blood Adv, 2021, 5(8): 2216-2228.
9 Pinti M, Cevenini E, Nasi M, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”[J]. Eur J Immunol, 2014, 44(5): 1552-1562.
10 Trumpff C, Marsland AL, Basualto-Alarcón C, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA[J]. Psychoneuroendocrinology, 2019, 106: 268-276.
11 Trumpff C, Michelson J, Lagranha CJ, et al. Stress and circulating cell-free mitochondrial DNA: a systematic review of human studies, physiological considerations, and technical recommendations[J]. Mitochondrion, 2021, 59: 225-245.
12 Trumpff C, Rausser S, Haahr R, et al. Dynamic behavior of cell-free mitochondrial DNA in human saliva[J]. Psychoneuroendocrinology, 2022, 143: 105852.
13 Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria[J]. FASEB J, 2020, 34(3): 3616-3630.
14 Roch B, Pisareva E, Sanchez C, et al. Plasma derived cell-free mitochondrial DNA originates mainly from circulating cell-free mitochondria[J]. bio Rxiv, 2021. doi: 10.1101/2021.09.03.458846 .
doi: 10.1101/2021.09.03.458846
15 Stephens OR, Grant D, Frimel M, et al. Characteri-zation and origins of cell-free mitochondria in healthy murine and human blood[J]. Mitochondrion, 2020, 54: 102-112.
16 Lázaro-Ibáñez E, Lässer C, Shelke GV, et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology[J]. J Extracell Vesicles, 2019, 8(1): 1656993.
17 Szilágyi M, Pös O, Márton É, et al. Circulating cell-free nucleic acids: Main characteristics and clinical application[J]. Int J Mol Sci, 2020, 21(18): 6827.
18 Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165761.
19 Liu DL, Gao YS, Liu J, et al. Intercellular mitochondrial transfer as a means of tissue revitalization[J]. Signal Transduct Target Ther, 2021, 6(1): 65.
20 Tsilioni I, Theoharides TC. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β[J]. J Neuroinflammation, 2018, 15(1): 239.
21 de Gaetano A, Solodka K, Zanini G, et al. Molecular mechanisms of mtDNA-mediated inflammation[J]. Cells, 2021, 10(11): 2898.
22 Liu J, Wang YF, Shi Q, et al. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway[J]. Oxid Med Cell Longev, 2022, 2022: 1000213.
23 Masi S, Orlandi M, Parkar M, et al. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type Ⅱ diabetes and perio-dontitis: a randomised controlled clinical trial[J]. Int J Cardiol, 2018, 271: 263-268.
24 Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017, 44(5): 463-471.
25 Konečná B, Gaál Kovalčíková A, Pančíková A, et al. Salivary extracellular DNA and DNase activity in periodontitis[J]. Appl Sci, 2020, 10(21): 7490.
26 吴圣贤, 王成祥. 临床研究样本含量估算基础[M]. 北京: 人民卫生出版社, 2008: 24-26.
Wu SX, Wang CX. Sample size calculation basics for clinical research[M]. Beijing: People’s Medical Publishing House, 2008: 24-26.
27 Papapanou PN, Sanz M, Buduneli N, et al. Perio-dontitis: consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Perio-dontal and Peri-Implant Diseases and Conditions[J]. J Periodontol, 2018, 89(): S173-S182.
28 Lang NP, Bartold PM. Periodontal health[J]. J Perio-dontol, 2018, 89(): S9-S16.
29 Hummel EM, Hessas E, Müller S, et al. Cell-free DNA release under psychosocial and physical stress conditions[J]. Transl Psychiatry, 2018, 8(1): 236.
30 Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clin Chem, 2009, 55(4): 611-622.
31 Lumley T, Diehr P, Emerson S, et al. The importance of the normality assumption in large public health data sets[J]. Annu Rev Public Health, 2002, 23: 151-169.
32 Brinkmann V. Neutrophil extracellular traps in the second decade[J]. J Innate Immun, 2018, 10(5/6): 414-421.
33 Cataño Cañizales YG, Uresti Rivera EE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes[J]. Iran J Immunol, 2018, 15(2): 142-155.
34 Silzer T, Barber R, Sun J, et al. Circulating mitochondrial DNA: new indices of type 2 diabetes-related cognitive impairment in Mexican Americans[J]. PLoS One, 2019, 14(3): e0213527.
35 Fatima T, Khurshid Z, Rehman A, et al. Gingival crevicular fluid (GCF): a diagnostic tool for the detection of periodontal health and diseases[J]. Molecules, 2021, 26(5): 1208.
[1] 马瑜鸿,赵蕾. 微创非手术牙周治疗技术的临床研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 227-232.
[2] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[3] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[4] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[5] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[6] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[7] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[8] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[9] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[10] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[11] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[12] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[13] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[14] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[15] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[10] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .