国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (2): 208-216.doi: 10.7518/gjkq.2024027
王文轩(),刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江()
Wenxuan Wang(),Yunkun Liu,Bingzhi Li,Nengwen Huang,Zeyu Hou,Jinru Tang,Longjiang Li()
摘要:
了解口腔鳞状细胞癌(OSCC)发生、发展的分子机制仍然是认识OSCC恶性生物学特点及探索针对性治疗方法的研究热点。晚期糖基化终末产物(AGE)及其受体RAGE与其他受体在体内相互作用,从而激活多个信号通路,诱导白细胞介素、生长因子和细胞因子的合成。近期的研究表明,AGE/RAGE相关信号传导通路的激活影响OSCC的增殖、侵袭、血管生成、局部复发,与晚期OSCC症患者的预后不良有关。本文对AGE/RAGE与OSCC恶性演进进行综述,以期为OSCC治疗提供潜在靶点。
中图分类号:
1 | Ng JH, Iyer NG, Tan MH, et al. Changing epide-miology of oral squamous cell carcinoma of the tongue: a global study[J]. Head Neck, 2017, 39(2): 297-304. |
2 | Hu Y, Zhang XH, Ma YN, et al. Incident type 2 diabetes duration and cancer risk: a prospective study in two US cohorts[J]. J Natl Cancer Inst, 2021, 113(4): 381-389. |
3 | Wu CH, Wu TY, Li CC, et al. Impact of diabetes mellitus on the prognosis of patients with oral squamous cell carcinoma: a retrospective cohort study[J]. Ann Surg Oncol, 2010, 17(8): 2175-2183. |
4 | Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress[J]. J Diabetes Res, 2014, 2014: 137919. |
5 | Choudhuri S, Dutta D, Chowdhury IH, et al. Asso-ciation of hyperglycemia mediated increased advanced glycation and erythrocyte antioxidant enzyme activity in different stages of diabetic retinopathy[J]. Diabetes Res Clin Pract, 2013, 100(3): 376-384. |
6 | Sakamoto Y, Okui T, Yoneda T, et al. High-mobility group box 1 induces bone destruction associated with advanced oral squamous cancer via RAGE and TLR4[J]. Biochem Biophys Res Commun, 2020, 531(3): 422-430. |
7 | Ren LY, Lou Y, Sun MY. The anti-tumor effects of evodiamine on oral squamous cell carcinoma (OSCC) through regulating advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway[J]. Bioengineered, 2021, 12(1): 5985-5995. |
8 | Ko SY, Ko HA, Shieh TM, et al. Advanced glycation end products influence oral cancer cell survival via Bcl-xl and Nrf-2 regulation in vitro [J]. Oncol Lett, 2017, 13(5): 3328-3334. |
9 | Chapman S, Mick M, Hall P, et al. Cigarette smoke extract induces oral squamous cell carcinoma cell invasion in a receptor for advanced glycation end-products-dependent manner[J]. Eur J Oral Sci, 2018, 126(1): 33-40. |
10 | Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biol, 2014, 2: 411-429. |
11 | Palanissami G, Paul SFD. RAGE and its ligands: molecular interplay between glycation, inflammation, and hallmarks of cancer-a review[J]. Horm Cancer, 2018, 9(5): 295-325. |
12 | Zhang WD, Randell EW, Sun G, et al. Hyperglycemia-related advanced glycation end-products is associated with the altered phosphatidylcholine meta-bolism in osteoarthritis patients with diabetes[J]. PLoS One, 2017, 12(9): e0184105. |
13 | Zeng C, Li YY, Ma JZ, et al. Clinical/translational aspects of advanced glycation end-products[J]. Trends Endocrinol Metab, 2019, 30(12): 959-973. |
14 | Rungratanawanich W, Qu Y, Wang X, et al. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-media-ted tissue injury[J]. Exp Mol Med, 2021, 53(2): 168-188. |
15 | McRobert EA, Gallicchio M, Jerums G, et al. The amino-terminal domains of the ezrin, radixin, and moesin (ERM) proteins bind advanced glycation end products, an interaction that may play a role in the development of diabetic complications[J]. J Biol Chem, 2003, 278(28): 25783-25789. |
16 | Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products[J]. J Mol Med Berlin Ger, 2005, 83(11): 876-886. |
17 | Oczypok EA, Perkins TN, Oury TD. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses[J]. Paediatr Respir Rev, 2017, 23: 40-49. |
18 | Teodorowicz M, Hendriks WH, Wichers HJ, et al. Immunomodulation by processed animal feed: the role of Maillard reaction products and advanced glycation end-products (AGEs)[J]. Front Immunol, 2018, 9: 2088. |
19 | Hudson BI, Lippman ME. Targeting RAGE signa-ling in inflammatory disease[J]. Annu Rev Med, 2018, 69: 349-364. |
20 | Leung SS, Forbes JM, Borg DJ. Receptor for advanced glycation end products (RAGE) in type 1 diabetes pathogenesis[J]. Curr Diab Rep, 2016, 16(10): 100. |
21 | Rojas A, Delgado-López F, González I, et al. The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor[J]. Cell Signal, 2013, 25(3): 609-614. |
22 | Huang JS, Guh JY, Hung WC, et al. Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells[J]. Biochem J, 1999, 342(Pt 1): 231-238. |
23 | Mollace A, Coluccio ML, Donato G, et al. Cross-talks in colon cancer between RAGE/AGEs axis and inflammation/immunotherapy[J]. Oncotarget, 2021, 12(13): 1281-1295. |
24 | Gawlowski T, Stratmann B, Ruetter R, et al. Advanced glycation end products strongly activate platelets[J]. Eur J Nutr, 2009, 48(8): 475-481. |
25 | Sick E, Brehin S, André P, et al. Advanced glycation end products (AGEs) activate mast cells[J]. Br J Pharmacol, 2010, 161(2): 442-455. |
26 | Heidari F, Rabizadeh S, Mansournia MA, et al. Inflammatory, oxidative stress and anti-oxidative markers in patients with endometrial carcinoma and diabetes[J]. Cytokine, 2019, 120: 186-190. |
27 | Ashraf JM, Shahab U, Tabrez S, et al. DNA glycation from 3-deoxyglucosone leads to the formation of AGEs: potential role in cancer auto-antibodies[J]. Cell Biochem Biophys, 2016, 74(1): 67-77. |
28 | Chen M, Glenn JV, Dasari S, et al. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization[J]. PLoS One, 2014, 9(2): e89548. |
29 | Qian QQ, Zhang X, Wang YW, et al. Pro-inflammatory role of high-mobility group box-1 on brain mast cells via the RAGE/NF-κB pathway[J]. J Neurochem, 2019, 151(5): 595-607. |
30 | Nakamura N, Matsui T, Ishibashi Y, et al. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice[J]. Mol Med, 2017, 23: 295-306. |
31 | Ritter B, Greten FR. Modulating inflammation for cancer therapy[J]. J Exp Med, 2019, 216(6): 1234-1243. |
32 | Kolonin MG, Sergeeva A, Staquicini DI, et al. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone[J]. Cancer Res, 2017, 77(12): 3144-3150. |
33 | Chen MC, Chen KC, Chang GC, et al. RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer[J]. Cell Death Dis, 2020, 11(4): 265. |
34 | Kwak T, Drews-Elger K, Ergonul A, et al. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis[J]. Oncogene, 2017, 36(11): 1559-1572. |
35 | Ohgami N, Nagai R, Miyazaki A, et al. Scavenger receptor class B type Ⅰ -mediated reverse choleste-rol transport is inhibited by advanced glycation end products[J]. J Biol Chem, 2001, 276(16): 13348-13355. |
36 | Elangovan I, Thirugnanam S, Chen AS, et al. Targe-ting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth[J]. Biochem Biophys Res Commun, 2012, 417(4): 1133-1138. |
37 | Jandial R, Neman J, Lim PP, et al. Inhibition of GLO1 in glioblastoma multiforme increases DNA-AGEs, stimulates RAGE expression, and inhibits brain tumor growth in orthotopic mouse models[J]. Int J Mol Sci, 2018, 19(2): 406. |
38 | Chen XB, Zhang LY, Zhang IY, et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma[J]. Cancer Res, 2014, 74(24): 7285-7297. |
39 | Erusalimsky JD. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes[J]. Redox Biol, 2021, 42: 101958. |
40 | Tesarová P, Kalousová M, Jáchymová M, et al. Receptor for advanced glycation end products (RAGE): soluble form (sRAGE) and gene polymorphisms in patients with breast cancer[J]. Cancer Invest, 2007, 25(8): 720-725. |
41 | Jiao L, Weinstein SJ, Albanes D, et al. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study[J]. Cancer Res, 2011, 71(10): 3582-3589. |
42 | Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo [J]. J Biol Chem, 2006, 281(12): 8242-8253. |
43 | Blatt S, Krüger M, Ziebart T, et al. Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: a review of the literature[J]. J Craniomaxillofac Surg, 2017, 45(5): 722-730. |
44 | Malik UU, Zarina S, Pennington SR. Oral squamous cell carcinoma: key clinical questions, biomarker discovery, and the role of proteomics[J]. Arch Oral Biol, 2016, 63: 53-65. |
45 | Nagaraj NS, Zacharias W. Cigarette smoke condensate increases cathepsin-mediated invasiveness of oral carcinoma cells[J]. Toxicol Lett, 2007, 170(2): 134-145. |
46 | Robinson AB, Johnson KD, Bennion BG, et al. RAGE signaling by alveolar macrophages influen-ces tobacco smoke-induced inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302(11): L1192-L1199. |
47 | Winden DR, Barton DB, Betteridge BC, et al. Antenatal exposure of maternal secondhand smoke (SHS) increases fetal lung expression of RAGE and induces RAGE-mediated pulmonary inflammation[J]. Respir Res, 2014, 15(1): 129. |
48 | Bhawal UK, Ozaki Y, Nishimura M, et al. Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma[J]. Oncology, 2005, 69(3): 246-255. |
49 | Lin CW, Chou YE, Yeh CM, et al. A functional va-riant at the miRNA binding site in HMGB1 gene is associated with risk of oral squamous cell carcinoma[J]. Oncotarget, 2017, 8(21): 34630-34642. |
50 | Supic G, Kozomara R, Zeljic K, et al. HMGB1 genetic polymorphisms in oral squamous cell carcinoma and oral lichen planus patients[J]. Oral Dis, 2015, 21(4): 536-543. |
51 | Su S, Chien M, Lin C, et al. RAGE gene polymorphism and environmental factor in the risk of oral cancer[J]. J Dent Res, 2015, 94(3): 403-411. |
52 | Ko SY, Ko HA, Shieh TM, et al. Cell migration is regulated by AGE-RAGE interaction in human oral cancer cells in vitro [J]. PLoS One, 2014, 9(10): e110542. |
53 | Okamoto T, Yamagishi S, Inagaki Y, et al. Angioge-nesis induced by advanced glycation end products and its prevention by cerivastatin[J]. FASEB J, 2002, 16(14): 1928-1930. |
54 | López-Graniel CM, Tamez de León D, Meneses-García A, et al. Tumor angiogenesis as a prognostic factor in oral cavity carcinomas[J]. J Exp Clin Cancer Res, 2001, 20(4): 463-468. |
55 | Schliephake H. Prognostic relevance of molecular markers of oral cancer: a review[J]. Int J Oral Maxillofac Surg, 2003, 32(3): 233-245. |
56 | Sasahira T, Kirita T, Bhawal UK, et al. The expression of receptor for advanced glycation end pro-ducts is associated with angiogenesis in human oral squamous cell carcinoma[J]. Virchows Arch, 2007, 450(3): 287-295. |
57 | Sasahira T, Kirita T, Bhawal UK, et al. Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma[J]. Histopathology, 2007, 51(2): 166-172. |
58 | Ahmad JG, Namin AW, Jorgensen JB, et al. Mandi-bular invasion by oral squamous cell carcinoma: clinicopathologic features of 74 cases[J]. Otolaryngol Head Neck Surg, 2019, 160(6): 1034-1041. |
59 | Shaw RJ, Brown JS, Woolgar JA, et al. The in-fluence of the pattern of mandibular invasion on recurrence and survival in oral squamous cell carcinoma[J]. Head Neck, 2004, 26(10): 861-869. |
60 | Dong XN, Qin A, Xu JK, et al. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption[J]. Bone, 2011, 49(2): 174-183. |
61 | Kim H, Kim B, Kim SI, et al. S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis[J]. Bone Res, 2019, 7: 30. |
62 | Hwang ST, Um JY, Chinnathambi A, et al. Evodiamine mitigates cellular growth and promotes apoptosis by targeting the c-met pathway in prostate cancer cells[J]. Molecules, 2020, 25(6): 1320. |
63 | Kim SH, Kang JG, Kim CS, et al. Evodiamine suppresses survival, proliferation, migration and epithelial-mesenchymal transition of thyroid carcinoma cells[J]. Anticancer Res, 2018, 38(11): 6339-6352. |
64 | Zhao S, Xu K, Jiang R, et al. Evodiamine inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells via the Hippo-Yes-Associated Protein signaling pathway[J]. Life Sci, 2020, 251: 117424. |
65 | Sasahira T, Kirita T, Oue N, et al. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma[J]. Cancer Sci, 2008, 99(9): 1806-1812. |
66 | Arcas A, Wilkinson DG, Nieto MÁ. The evolutio-nary history of ephs and ephrins: toward multicellular organisms[J]. Mol Biol Evol, 2020, 37(2): 379-394. |
67 | Chen YN, Zhang HM, Zhang YM. Targeting receptor tyrosine kinase EphB4 in cancer therapy[J]. Semin Cancer Biol, 2019, 56: 37-46. |
68 | Yi C, Zhang XL, Li HY, et al. EPHB4 regulates the proliferation and metastasis of oral squamous cell carcinoma through the HMGB1/NF‑κB signalling pathway[J]. J Cancer, 2021, 12(20): 5999-6011. |
69 | Tsujinaka H, Itaya-Hironaka A, Yamauchi A, et al. Statins decrease vascular epithelial growth factor expression via down-regulation of receptor for advanced glycation end-products[J]. Heliyon, 2017, 3(9): e00401. |
[1] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[2] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[3] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[4] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[5] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[6] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
[7] | 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470. |
[8] | 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143. |
[9] | 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717. |
[10] | 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212. |
[11] | 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57. |
[12] | 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669-676. |
[13] | 郝福,宁毅,孙睿,郑晓旭. 口腔鳞状细胞癌中转化因子2β的表达及潜在的临床意义[J]. 国际口腔医学杂志, 2020, 47(2): 159-165. |
[14] | 薛伶俐,李雅冬. 经首次根治性手术治疗口腔鳞状细胞癌患者的生存相关影响因素分析[J]. 国际口腔医学杂志, 2020, 47(2): 166-174. |
[15] | 董云梅,陶艳,周瑜. 口腔黏膜癌变过程中血清生化标志物的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 43-50. |
|