国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 385-390.doi: 10.7518/gjkq.2021079
Ding Xu1(),Li Xin1,Li Yan1,Xia Boyuan1,Yu Weixian2,3(
)
摘要:
牙周炎主要是由菌斑微生物引起的牙周支持组织的慢性炎症性疾病。近年来,关于线粒体质量控制与牙周炎之间的关系受到学者们的广泛关注。线粒体质量控制包括线粒体的生物发生、动力学和自噬三部分,任何一个部分紊乱都会导致线粒体功能障碍,进而诱发相关疾病。氧化应激会导致线粒体质量控制失衡,可能在牙周炎发展中起关键作用。本文就氧化应激、过氧化物酶体增殖物激活受体-γ共激活因子1 α、核呼吸因子1/2、有丝分裂蛋白1/2、动力蛋白相关蛋白1、PTEN诱导的假定激酶1等蛋白引起线粒体功能障碍在牙周炎中的相关研究进展进行综述,旨在为牙周炎的防治提供新的思路。
中图分类号:
[1] |
Vasconcelos ACCG, Vasconcelos DFP, Pereira da Silva FR, et al. Periodontitis causes abnormalities in the liver of rats[J]. J Periodontol, 2019,90(3):295-305.
doi: 10.1002/JPER.18-0226 |
[2] |
Bhattarai G, Poudel SB, Kook SH, et al. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis[J]. Acta Biomater, 2016,29:398-408.
doi: S1742-7061(15)30161-6 pmid: 26497626 |
[3] | Kondadi AK, Anand R, Reichert AS. Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity[J]. Int J Mol Sci, 2019,20(17):E4311. |
[4] |
Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis[J]. Mitochondrion, 2011,11(3):504-512.
doi: 10.1016/j.mito.2011.01.009 |
[5] |
Chen YT, Ji YH, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress[J]. Biochem Biophys Res Commun, 2019,509(2):483-490.
doi: 10.1016/j.bbrc.2018.12.143 |
[6] |
Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017,44(5):463-471.
doi: 10.1111/jcpe.2017.44.issue-5 |
[7] |
Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing[J]. Nat Rev Cardiol, 2018,15(9):543-554.
doi: 10.1038/s41569-018-0059-z pmid: 30042431 |
[8] |
Whitaker RM, Corum D, Beeson CC, et al. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases[J]. Annu Rev Pharmacol Toxicol, 2016,56:229-249.
doi: 10.1146/annurev-pharmtox-010715-103155 |
[9] | Wu NN, Zhang YM, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging[J]. Oxidative Med Cell Longev, 2019,2019:1-15. |
[10] |
Chandel NS. Mitochondria as signaling organelles[J]. BMC Biol, 2014,12:34.
doi: 10.1186/1741-7007-12-34 |
[11] |
Zhu JH, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013,9(11):1663-1676.
doi: 10.4161/auto.24135 |
[12] |
Vasileiou P, Evangelou K, Vlasis K, et al. Mitochondrial homeostasis and cellular senescence[J]. Cells, 2019,8(7):686.
doi: 10.3390/cells8070686 |
[13] | Fu WY, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors[J]. Stem Cells Int, 2019,2019:9757201. |
[14] |
Chang JS, Huypens P, Zhang YB, et al. Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1[J]. J Biol Chem, 2010,285(23):18039-18050.
doi: 10.1074/jbc.M109.083121 |
[15] |
Granata C, Jamnick NA, Bishop DJ. Principles of e-xercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis[J]. Sports Med, 2018,48(7):1541-1559.
doi: 10.1007/s40279-018-0894-4 pmid: 29675670 |
[16] |
Singh SP, Huck O, Abraham NG, et al. Kavain reduces Porphyromonas gingivalis-induced adipocyte inflammation: role of PGC-1α signaling[J]. J Immunol, 2018,201(5):1491-1499.
doi: 10.4049/jimmunol.1800321 |
[17] | 蔡川, 黄也, 王婧, 等. 炎症微环境对牙周膜干细胞氧化应激和线粒体生成的影响[J]. 中华老年口腔医学杂志, 2018,16(6):327-332. |
Cai C, Huang Y, Wang J, et al. Effects of inflamma-tory microenvironment on the oxidative stress and mitochondriogenesis of human periodontal ligament stem cells[J]. Chin J Geriatr Dent, 2018,16(6):327-332. | |
[18] |
Hong RD, Wang ZG, Sui AH, et al. Gingival mesenchymal stem cells attenuate pro-inflammatory ma-crophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism[J]. Arch Oral Biol, 2019,98:92-98.
doi: 10.1016/j.archoralbio.2018.11.007 |
[19] |
Hayashi G, Jasoliya M, Sahdeo S, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans[J]. Hum Mol Genet, 2017,26(15):2864-2873.
doi: 10.1093/hmg/ddx167 |
[20] |
Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s di-seases[J]. Ageing Res Rev, 2019,54:100942.
doi: 10.1016/j.arr.2019.100942 |
[21] |
Park SY, Park DJ, Kim YH, et al. Schisandra chinensis α-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages[J]. Int Immunopharmacol, 2011,11(11):1907-1915.
doi: 10.1016/j.intimp.2011.07.023 |
[22] |
Sima C, Aboodi GM, Lakschevitz FS, et al. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal o-xidative damage and severe chronic periodontitis[J]. Am J Pathol, 2016,186(6):1417-1426.
doi: 10.1016/j.ajpath.2016.01.013 |
[23] |
Chiu AV, Saigh MA, McCulloch CA, et al. The role of NrF2 in the regulation of periodontal health and disease[J]. J Dent Res, 2017,96(9):975-983.
doi: 10.1177/0022034517715007 |
[24] |
Harder B, Jiang T, Wu TD, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention[J]. Biochem Soc Trans, 2015,43(4):680-686.
doi: 10.1042/BST20150020 |
[25] |
Murata H, Takamatsu H, Liu SL, et al. NRF2 regulates PINK1 expression under oxidative stress conditions[J]. PLoS One, 2015,10(11):e0142438.
doi: 10.1371/journal.pone.0142438 |
[26] | Kataoka K, Ekuni D, Tomofuji T, et al. Visualization of oxidative stress induced by experimental pe-riodontitis in Keap1-dependent oxidative stress detector-luciferase mice[J]. Int J Mol Sci, 2016,17(11):E1907. |
[27] |
Zhu CH, Zhao Y, Wu XY, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway[J]. J Periodontal Res, 2020,55(3):381-391.
doi: 10.1111/jre.v55.3 |
[28] |
Kanzaki H, Shinohara F, Kajiya M, et al. Nuclear Nrf2 induction by protein transduction attenuates osteoclastogenesis[J]. Free Radic Biol Med, 2014,77:239-248.
doi: 10.1016/j.freeradbiomed.2014.09.006 |
[29] |
Hyeon S, Lee H, Yang Y, et al. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation[J]. Free Radic Biol Med, 2013,65:789-799.
doi: 10.1016/j.freeradbiomed.2013.08.005 |
[30] | Liu YL, Yang HX, Wen Y, et al. Nrf2 inhibits perio-dontal ligament stem cell apoptosis under excessive oxidative stress[J]. Int J Mol Sci, 2017,18(5):E1076. |
[31] |
Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mt-DNA maintenance and embryogenesis in mice[J]. Nat Genet, 1998,18(3):231-236.
pmid: 9500544 |
[32] |
Ekstrand MI, Terzioglu M, Galter D, et al. Progressive Parkinsonism in mice with respiratory-chain-deficient dopamine neurons[J]. Proc Natl Acad Sci U S A, 2007,104(4):1325-1330.
pmid: 17227870 |
[33] |
Miyazaki T, Iwasawa M, Nakashima T, et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption[J]. J Biol Chem, 2012,287(45):37808-37823.
doi: 10.1074/jbc.M112.385369 |
[34] |
Bullón P, Román-Malo L, Marín-Aguilar F, et al. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement[J]. Pharmacol Res, 2015,91:1-8.
doi: 10.1016/j.phrs.2014.10.007 |
[35] |
Anand R, Wai T, Baker MJ, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission[J]. J Cell Biol, 2014,204(6):919-929.
doi: 10.1083/jcb.201308006 |
[36] |
Tondera D, Grandemange S, Jourdain A, et al. SLP-2 is required for stress-induced mitochondrial hyperfusion[J]. EMBO J, 2009,28(11):1589-1600.
doi: 10.1038/emboj.2009.89 |
[37] | Sharma A, Smith HJ, Yao P, et al. Causal roles of mitochondrial dynamics in longevity and healthy a-ging[J]. EMBO Rep, 2019,20(12):e48395. |
[38] | 翟启明, 李蓓, 王智伟, 等. 炎症微环境下线粒体融合蛋白2及其介导的内质网-线粒体偶联对牙周膜干细胞成骨分化能力的影响[J]. 中华口腔医学杂志, 2018,53(7):453-458. |
Zhai QM, Li B, Wang ZW, et al. Endoplasmic re-ticulum-mitochondrial contact regulates osteogenic differentiation of periodontal ligament stem cells via mitofusion 2 in inflammatory microenvironment[J]. Chin J Stomatol, 2018,53(7):453-458. | |
[39] | 翟启明, 李蓓, 刘露, 等. 线粒体融合蛋白-1对牙周膜干细胞成骨分化能力的影响[J]. 实用口腔医学杂志, 2018,34(2):172-177. |
Zhai QM, Li B, Liu L, et al. Mitofusin-1 regulates osteogenic differentiation of periodontal ligament stem cells[J]. J Pract Stomatol, 2018,34(2):172-177. | |
[40] |
Thomenius M, Freel CD, Horn S, et al. Mitochon-drial fusion is regulated by reaper to modulate drosophila programmed cell death[J]. Cell Death Differ, 2011,18(10):1640-1650.
doi: 10.1038/cdd.2011.26 |
[41] |
Zhang X, Feng YF, Wang YP, et al. Resveratrol ameliorates disorders of mitochondrial biogenesis and dynamics in a rat chronic ocular hypertension model[J]. Life Sci, 2018,207:234-245.
doi: 10.1016/j.lfs.2018.06.010 |
[42] |
Gan XQ, Huang SB, Yu Q, et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun, 2015,468(4):719-725.
doi: 10.1016/j.bbrc.2015.11.022 |
[43] |
He YT, Gan XQ, Zhang L, et al. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells[J]. Am J Physiol Cell Physiol, 2018,315(3):C389-C397.
doi: 10.1152/ajpcell.00248.2017 |
[44] |
Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017,367(1):111-123.
doi: 10.1007/s00441-016-2485-8 |
[45] |
Becker D, Richter J, Tocilescu MA, et al. Pink1 kinase and its membrane potential (δψ)-dependent cleavage product both localize to outer mitochon-drial membrane by unique targeting mode[J]. J Biol Chem, 2012,287(27):22969-22987.
doi: 10.1074/jbc.M112.365700 |
[46] |
Okatsu K, Oka T, Iguchi M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria[J]. Nat Commun, 2012,3:1016.
doi: 10.1038/ncomms2016 pmid: 22910362 |
[47] |
Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019,52(5):676-688.
doi: 10.1111/iej.13055 pmid: 30537112 |
[48] | Chiricosta L, Gugliandolo A, Diomede F, et al. Mo-ringin pretreatment inhibits the expression of genes involved in mitophagy in the stem cell of the human periodontal ligament[J]. Molecules, 2019,24(18):E3217. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[3] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[6] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[9] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[10] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[11] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[12] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[13] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[14] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[15] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
|