国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (5): 593-603.doi: 10.7518/gjkq.2019056
摘要:
牙周炎主要是由局部因素引起的牙周支持组织的慢性炎症,细菌感染与宿主免疫反应之间的抗衡影响着疾病的发生、发展。甲基化作为表观遗传修饰的一种,在这其中起到了举足轻重的作用,也成为近年来的热点,它可通过改变染色质的结构选择性地激活或抑制某些基因,影响炎症过程中炎性因子、信号分子、细胞外基质分子的表达,进而调控宿主的免疫水平。对甲基化模式的研究不仅可以增加人们对牙周炎的认识,也对临床有着深远的意义,有助于人们探索治疗牙周炎的新途径,改善牙周炎的预后和转归,是未来重要的研究内容。本文从甲基化修饰的角度对牙周炎相关的研究进展作一综述。
中图分类号:
[1] | Hajishengallis G . Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44. |
[2] | Genco RJ, Borgnakke WS . Risk factors for periodontal disease[J]. Periodontol 2000, 2013,62(1):59-94. |
[3] | Laine ML, Crielaard W, Loos BG . Genetic susceptibility to periodontitis[J]. Periodontol 2000, 2012,58(1):37-68. |
[4] | De Souza AP, Planello AC, Marques MR , et al. High- throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis[J]. Clin Epigenetics, 2014,6(1):15. |
[5] | Sadakierska-Chudy A, Kostrzewa RM, Filip M . A comprehensive view of the epigenetic landscape part Ⅰ: DNA methylation, passive and active DNA demethylation pathways and histone variants[J]. Neurotox Res, 2015,27(1):84-97. |
[6] | Ngollo M, Dagdemir A, Karsli-Ceppioglu S , et al. Epigenetic modifications in prostate cancer[J]. Epigenomics, 2014,6(4):415-426. |
[7] | Lindroth AM, Park YJ . Epigenetic biomarkers: a step forward for understanding periodontitis[J]. J Periodontal Implant Sci, 2013,43(3):111-120. |
[8] | Seo JY, Park YJ, Yi YA , et al. Epigenetics: general characteristics and implications for oral health[J]. Restor Dent Endod, 2015,40(1):14-22. |
[9] | Jones PA, Liang G . Rethinking how DNA methylation patterns are maintained[J]. Nat Rev Genet, 2009,10(11):805-811. |
[10] | Deng G, Chen A, Pong E , et al. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression[J]. Oncogene, 2001,20(48):7120-7127. |
[11] | Egger G, Liang G, Aparicio A , et al. Epigenetics in human disease and prospects for epigenetic therapy[J]. Nature, 2004,429(6990):457-463. |
[12] | Bayarsaihan D . Epigenetic mechanisms in inflammation[J]. J Dent Res, 2011,90(1):9-17. |
[13] | Lod S, Johansson T, Abrahamsson KH , et al. The influence of epigenetics in relation to oral health[J]. Int J Dent Hyg, 2014,12(1):48-54. |
[14] | Barros SP, Offenbacher S . Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Periodontol 2000, 2014,64(1):95-110. |
[15] | Larsson L, Castilho RM, Giannobile WV . Epigenetics and its role in periodontal diseases: a state-of-the-art review[J]. J Periodontol, 2015,86(4):556-568. |
[16] | Luo Y, Peng X, Duan D , et al. Epigenetic regulations in the pathogenesis of periodontitis[J]. Curr Stem Cell Res Ther, 2018,13(2):144-150. |
[17] | Lee DY, Teyssier C, Strahl BD , et al. Role of protein methylation in regulation of transcription[J]. Endocr Rev, 2005,26(2):147-170. |
[18] | Tachibana M, Ueda J, Fukuda M , et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9[J]. Genes Dev, 2005,19(7):815-826. |
[19] | Gary JD, Clarke S . RNA and protein interactions modulated by protein arginine methylation[J]. Prog Nucleic Acid Res Mol Biol, 1998,61:65-131. |
[20] | Wilson AG . Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases[J]. J Periodontol, 2008,79(8 Suppl):1514-1519. |
[21] | Costa PP, Trevisan GL, Macedo GO , et al. Salivary interleukin-6, matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and diabetes[J]. J Periodontol, 2010,81(3):384-391. |
[22] | Nile CJ, Read RC, Akil M , et al. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis[J]. Arthritis Rheum, 2008,58(9):2686-2693. |
[23] | Ishida K, Kobayashi T, Ito S , et al. Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis[J]. J Periodontol, 2012,83(7):917-925. |
[24] | Kobayashi T, Ishida K, Yoshie H . Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis[J]. Arch Oral Biol, 2016,69:89-94. |
[25] | Remick DG . Interleukin-8[J]. Crit Care Med, 2005,33(12 Suppl):S466-S467. |
[26] | Scapini P, Lapinet-Vera JA, Gasperini S , et al. The neutrophil as a cellular source of chemokines[J]. Immunol Rev, 2000,177:195-203. |
[27] | Marshall JC . Neutrophils in the pathogenesis of sepsis[J]. Crit Care Med, 2005,33(12 Suppl):S502-S505. |
[28] | Oliveira NF, Damm GR, Andia DC , et al. DNA methylation status of the IL8 gene promoter in oral cells of smokers and non-smokers with chronic periodontitis[J]. J Clin Periodontol, 2009,36(9):719-725. |
[29] | Andia DC, de Oliveira NF, Casarin RC , et al. DNA methylation status of the IL8 gene promoter in aggressive periodontitis[J]. J Periodontol, 2010,81(9):1336-1341. |
[30] | Szalmás A, Bánáti F, Koroknai A , et al. Lineage-specific silencing of human IL-10 gene expression by promoter methylation in cervical cancer cells[J]. Eur J Cancer, 2008,44(7):1030-1038. |
[31] | Lappin DF , MacLeod CP, Kerr A, et al. Anti-inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation tissue[J]. Clin Exp Immunol, 2001,123(2):294-300. |
[32] | Viana MB, Cardoso FP, Diniz MG , et al. Methylation pattern of IFN-γ and IL-10 genes in periodontal tissues[J]. Immunobiology, 2011,216(8):936-941. |
[33] | Garlet GP, Martins W Jr, Ferreira BR , et al. Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease[J]. J Periodontal Res, 2003,38(2):210-217. |
[34] | Zhang S, Crivello A, Offenbacher S , et al. Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis[J]. J Clin Periodontol, 2010,37(11):953-961. |
[35] | Dutzan N, Vernal R, Hernandez M , et al. Levels of interferon-gamma and transcription factor T-bet in progressive periodontal lesions in patients with chronic periodontitis[J]. J Periodontol, 2009,80(2):290-296. |
[36] | Ekhlassi S, Scruggs LY, Garza T , et al. Porphyromonas gingivalis lipopolysaccharide induces tumor necrosis factor-alpha and interleukin-6 secretion, and CCL25 gene expression, in mouse primary gingival cell lines: interleukin-6-driven activation of CCL2[J]. J Periodontal Res, 2008,43(4):431-439. |
[37] | Aggarwal S, Gurney AL . IL-17: prototype member of an emerging cytokine family[J]. J Leukoc Biol, 2002,71(1):1-8. |
[38] | Mitani A, Niedbala W, Fujimura T , et al. Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival tissues with chronic periodontitis[J]. J Periodontol, 2015,86(2):301-309. |
[39] | Shaker OG, Ghallab NA . IL-17 and IL-11 GCF levels in aggressive and chronic periodontitis patients: relation to PCR bacterial detection[J]. Mediators Inflamm, 2012,2012:174764. |
[40] | Costa MF, Bornstein VU, Candéa AL , et al. CCL25 induces α4β7 integrin-dependent migration of IL-17 + γδ T lymphocytes during an allergic reaction [J]. Eur J Immunol, 2012,42(5):1250-1260. |
[41] | Schulz S, Immel UD, Just L , et al. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis[J]. Hum Immunol, 2016,77(1):71-75. |
[42] | Graves DT, Cochran D . The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction[J]. J Periodontol, 2003,74(3):391-401. |
[43] | Shapira L, Takashiba S, Champagne C , et al. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes[J]. J Immunol, 1994,153(4):1818-1824. |
[44] | Tervahartiala T, Koski H, Xu JW , et al. Tumor necrosis factor-alpha and its receptors, p55 and p75, in gingiva of adult periodontitis[J]. J Dent Res, 2001,80(6):1535-1539. |
[45] | Górska R, Gregorek H, Kowalski J , et al. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis[J]. J Clin Periodontol, 2003,30(12):1046-1052. |
[46] | Kurtiş B, Tüter G, Serdar M , et al. Gingival crevicular fluid levels of monocyte chemoattractant protein- 1 and tumor necrosis factor-alpha in patients with chronic and aggressive periodontitis[J]. J Periodontol, 2005,76(11):1849-1855. |
[47] | Zhang S, Barros SP, Moretti AJ , et al. Epigenetic regulation of TNFA expression in periodontal disease[J]. J Periodontol, 2013,84(11):1606-1616. |
[48] | Kojima A, Kobayashi T, Ito S , et al. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis[J]. J Periodontal Res, 2016,51(3):350-358. |
[49] | Smith WL , DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology[J]. Annu Rev Biochem, 2000,69:145-182. |
[50] | Noguchi K, Yanai M, Shitashige M , et al. Cyclooxygenase-2-dependent prostaglandin production by peripheral blood monocytes stimulated with lipopolysaccharides isolated from periodontopathogenic bacteria[J]. J Periodontol, 2000,71(10):1575-1582. |
[51] | Noguchi K, Ishikawa I . The roles of cyclooxygenase- 2 and prostaglandin E2 in periodontal disease[J]. Periodontol 2000, 2007,43:85-101. |
[52] | Champagne CM, Buchanan W, Reddy MS , et al. Potential for gingival crevice fluid measures as predictors of risk for periodontal diseases[J]. Periodontol 2000, 2003,31:167-180. |
[53] | Zhong Y, Slade GD, Beck JD , et al. Gingival crevicular fluid interleukin-1beta, prostaglandin E2 and periodontal status in a community population[J]. J Clin Periodontol, 2007,34(4):285-293. |
[54] | Zhang S, Barros SP, Niculescu MD , et al. Alteration of PTGS2 promoter methylation in chronic periodontitis[J]. J Dent Res, 2010,89(2):133-137. |
[55] | Asa’ad F, Bollati V, Pagni G , et al. Evaluation of DNA methylation of inflammatory genes following treatment of chronic periodontitis: a pilot case-control study[J]. J Clin Periodontol, 2017,44(9):905-914. |
[56] | Ohi T, Uehara Y, Takatsu M , et al. Hypermethylation of CpGs in the promoter of the COL1A1 gene in the aged periodontal ligament[J]. J Dent Res, 2006,85(3):245-250. |
[57] | Loo WT, Jin L, Cheung MN , et al. Epigenetic change in E-cadherin and COX-2 to predict chronic periodontitis[J]. J Transl Med, 2010,8:110. |
[58] | Nagarakanti S, Ramya S, Babu P , et al. Differential expression of E-cadherin and cytokeratin 19 and net proliferative rate of gingival keratinocytes in oral epithelium in periodontal health and disease[J]. J Periodontol, 2007,78(11):2197-2202. |
[59] | Baptista NB, Portinho D, Casarin RC , et al. DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients[J]. Arch Oral Biol, 2014,59(7):670-678. |
[60] | Andia DC, Planello AC, Portinho D , et al. DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue[J]. Clin Oral Investig, 2015,19(9):2337-2344. |
[61] | Uehara O, Abiko Y, Saitoh M , et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts[J]. J Microbiol Immunol Infect, 2014,47(3):176-181. |
[62] | Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001,2(8):675-680. |
[63] | Kumar H, Kawai T, Akira S . Toll-like receptors and innate immunity[J]. Biochem Biophys Res Commun, 2009,388(4):621-625. |
[64] | Kocgozlu L, Elkaim R, Tenenbaum H , et al. Variable cell responses to P. gingivalis lipopolysaccharide[J]. J Dent Res, 2009,88(8):741-745. |
[65] | Teng YT . Protective and destructive immunity in the periodontium: part 1—innate and humoral immunity and the periodontium[J]. J Dent Res, 2006,85(3):198-208. |
[66] | Burns E, Bachrach G, Shapira L , et al. Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption[J]. J Immunol, 2006,177(12):8296-8300. |
[67] | Medzhitov R, Janeway C Jr . Innate immune recognition: mechanisms and pathways[J]. Immunol Rev, 2000,173:89-97. |
[68] | De Oliveira NF, Andia DC, Planello AC , et al. TLR2 and TLR4 gene promoter methylation status during chronic periodontitis[J]. J Clin Periodontol, 2011,38(11):975-983. |
[69] | de Faria Amormino SA, Arão TC, Saraiva AM , et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis[J]. Hum Immunol, 2013,74(9):1231-1236. |
[70] | Johnson CM, Tapping RI . Microbial products stimulate human Toll-like receptor 2 expression through histone modification surrounding a proximal NF-kappaB-binding site[J]. J Biol Chem, 2007,282(43):31197-31205. |
[71] | Mize TW, Sundararaj KP, Leite RS , et al. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis[J]. J Periodontal Res, 2015,50(3):315-319. |
[72] | Zhang T, Wu J, Ungvijanpunya N , et al. Smad6 methylation represses NFκB activation and periodontal inflammation[J]. J Dent Res, 2018,97(7):810-819. |
[73] | Abiko Y, Uehara O, Fukumoto S , et al. Epigenetics of oral infection and inflammatory diseases—DNA methylation changes in infections and inflammation diseases[J]. J Oral Biosci, 2014,56(4):105-109. |
[74] | Takai R, Uehara O, Harada F , et al. DNA hypermethylation of extracellular matrix-related genes in human periodontal fibroblasts induced by stimulation for a prolonged period with lipopolysaccharide derived from Porphyromonas gingivalis[J]. J Periodontal Res, 2016,51(4):508-517. |
[75] | Li W, Zhu Y, Singh P , et al. Association of common variants in MMPs with periodontitis risk[J]. Dis Markers, 2016,2016:1545974. |
[76] | He CY, Gao XQ, Jiang LP . The impact of smoking on levels of chronic periodontitis-associated biomarkers[J]. Exp Mol Pathol, 2016,101(1):110-115. |
[77] | Li X, Lu J, Teng W , et al. Quantitative evaluation of MMP-9 and TIMP-1 promoter methylation in chronic periodontitis[J]. DNA Cell Biol, 2018,37(3):168-173. |
[78] | Kubota M, Tanno-Nakanishi M, Yamada S , et al. Effect of smoking on subgingival microflora of patients with periodontitis in Japan[J]. BMC Oral Health, 2011,11:1. |
[79] | Zini A, Sgan-Cohen HD, Marcenes W . Socio-economic position, smoking, and plaque: a pathway to severe chronic periodontitis[J]. J Clin Periodontol, 2011,38(3):229-235. |
[80] | Fiorini T, Musskopf ML, Oppermann RV , et al. Is there a positive effect of smoking cessation on periodontal health? A systematic review[J]. J Periodontol, 2014,85(1):83-91. |
[81] | Khan S . Effect of smoking on periodontal health[J]. Dis Mon, 2011,57(4):214-217. |
[82] | Cho YD, Kim PJ, Kim HG , et al. Transcriptomics and methylomics in chronic periodontitis with tobacco use: a pilot study[J]. Clin Epigenetics, 2017,9:81. |
[83] | Tomi N, Fukuyo Y, Arakawa S , et al. Pro-inflammatory cytokine production from normal human fibroblasts is induced by Tannerella forsythia detaching factor[J]. J Periodontal Res, 2008,43(2):136-142. |
[84] | Uehara A, Naito M, Imamura T , et al. Dual regulation of interleukin-8 production in human oral epithelial cells upon stimulation with gingipains from Porphyromonas gingivalis[J]. J Med Microbiol, 2008,57(Pt 4):500-507. |
[85] | Wu H, Lippmann JE, Oza JP , et al. Inactivation of DNA adenine methyltransferase alters virulence factors in Actinobacillus actinomycetemcomitans[J]. Oral Microbiol Immunol, 2006,21(4):238-244. |
[86] | Christman JK . 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy[J]. Oncogene, 2002,21(35):5483-5495. |
[87] | Sufaru IG, Beikircher G, Weinhaeusel A , et al. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts[J]. J Periodontal Implant Sci, 2017,47(2):66-76. |
[88] | Larsson L . Current concepts of epigenetics and its role in periodontitis[J]. Curr Oral Health Rep, 2017,4(4):286-293. |
[89] | Cho Y, Kim B, Bae H , et al. Direct gingival fibroblast/ osteoblast transdifferentiation via epigenetics[J]. J Dent Res, 2017,96(5):555-561. |
[90] | Rabineau M, Flick F, Mathieu E , et al. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate[J]. Biomaterials, 2015,37:144-155. |
[91] | Lv L, Liu Y, Zhang P , et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation[J]. Biomaterials, 2015,39:193-205. |
[92] | Nguyen DV, Li Calzi S, Shaw LC , et al. An ocular view of the IGF-IGFBP system[J]. Growth Horm IGF Res, 2013,23(3):45-52. |
[93] | Wang S, Mu J, Fan Z , et al. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla[J]. Stem Cell Res, 2012,8(3):346-356. |
[94] | Yu S, Long J, Yu J , et al. Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton’s jelly of the umbilical cord[J]. Cells Tissues Organs, 2013,197(3):209-223. |
[95] | Liu D, Wang Y, Jia Z , et al. Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials[J]. Stem Cells, 2015,33(8):2523-2536. |
[96] | Grover V, Kapoor A, Malhotra R , et al. Epigenetics and periodontal disease: hope to tame the untameable[J]. Curr Gene Ther, 2014,14(6):473-481. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[7] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[8] | 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36. |
[9] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[10] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[11] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[12] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[13] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[14] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[15] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
|