国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (6): 660-663.doi: 10.7518/gjkq.2017.06.007
唐秋玲, 李格格, 潘佳慧, 侯玉帛, 孟阳, 于维先
Tang Qiuling, Li Gege, Pan Jiahui, Hou Yubo, Meng Yang, Yu Weixian.
摘要: 细胞焦亡是一种典型的程序性细胞死亡方式,主要通过炎症小体的介导,并伴有大量促炎性细胞因子的释放。牙龈卟啉单胞菌作为牙周炎的关键致病菌,一方面可通过激活牙周组织中巨噬细胞内核苷酸结合寡聚化结构域样受体蛋白3炎症小体,促进细胞焦亡,引发牙周组织免疫病理损伤;另一方面,牙龈卟啉单胞菌通过抑制血管内皮细胞焦亡,逃逸免疫系统的杀伤作用,促进自身生存。本文就细胞焦亡及其在牙周炎中的作用机制作一综述。
中图分类号:
[1] Ghonime MG, Shamaa OR, Eldomany RA, et al. Tyro-sine phosphatase inhibition induces an ASC-depen-dent pyroptosis[J]. Biochem Biophys Res Commun, 2012, 425(2):384-389. [2] Bostanci N, Emingil G, Saygan B, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases[J]. Clin Exp Immunol, 2009, 157(3):415-422. [3] Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death [J]. Nat Rev Immunol, 2014, 14(9):601-618. [4] Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommenda-tions of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1):107-120. [5] Shi JJ, Zhao YE, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665. [6] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44. [7] Broz P. Immunology: caspase target drives pyroptosis [J]. Nature, 2015, 526(7575):642-643. [8] Lim Y, Kumar S. A single cut to pyroptosis[J]. Onco-target, 2015, 6(35):36926-36927. [9] He WT, Wan H, Hu L, et al. Gasdermin D is an exe-cutor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12):1285-1298. [10] Genco RJ, Van Dyke TE. Prevention: reducing the risk of CVD in patients with periodontitis[J]. Nat Rev Cardiol, 2010, 7(9):479-480. [11] Takahashi Y, Davey M, Yumoto H, et al. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells[J]. Cell Microbiol, 2006, 8(5):738- 757. [12] Kataoka H, Kono H, Patel Z, et al. Evaluation of the contribution of multiple DAMPs and DAMP recep-tors in cell death-induced sterile inflammatory res-ponses[J]. PLoS One, 2014, 9(8):e104741. [13] Ito Y, Bhawal UK, Sasahira T, et al. Involvement of HMGB1 and RAGE in IL-1β-induced gingival infla-mmation[J]. Arch Oral Biol, 2012, 57(1):73-80. [14] Li G, Liang X, Lotze MT. HMGB1: the central cyto-kine for all lymphoid cells[J]. Front Immunol, 2013, 4(4):68. [15] Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annu Rev Immunol, 2011, 29:139-162. [16] Di Benedetto A, Gigante I, Colucci S, et al. Perio-dontal disease: linking the primary inflammation to bone loss[J]. Clin Dev Immunol, 2013, 2013:503754. [17] Chakraborty R, Bhatt KH, Sodhi A. High mobility group box 1 protein synergizes with lipopolysacc-haride and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro [J]. Mol Immunol, 2013, 54(1):48-57. [18] Man SM, Kanneganti TD. Gasdermin D: the long-awaited executioner of pyroptosis[J]. Cell Res, 2015, 25(11):1183-1184. [19] Schroder K, Tschopp J. The inflammasones[J]. Cell, 2010, 140(6):821-832. [20] Shi JJ, Zhao YE, Wang YP, et al. Inflammatory cas-pases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187. [21] Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella -infected macrophages[J]. PLoS Pathog, 2007, 3(8):e111. [22] Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pne-umonia caused by Porphyromonas gingivalis [J]. J Innate Immun, 2016, 8(2):185-198. [23] Lausson S, Cressent M. Signal transduction pathways mediating the effect of adrenomedullin on osteoblast survival[J]. J Cell Biochem, 2011, 112(12):3807- 3815. [24] 陈玉婷, 宋祥晨, 张福萍, 等. 促凋亡蛋白Bim、Bax和Bak在牙龈蛋白酶诱导成骨细胞凋亡中的表达[J]. 中华口腔医学杂志, 2013, 48(5):272-277. Chen YT, Song XC, Zhang FP, et al. Expression of Bim, Bax and Bak in the process of gingipain-induced osteoblast apoptosis[J]. Chin J Stomatol, 2013, 48 (5):272-277. [25] Huang MT, Taxman DJ, Holley-Guthrie EA, et al. Critical role of apoptotic speck protein containing a caspase recruitment domain(ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells[J]. J Immunol, 2009, 182(4):2395-2404. [26] Kolev M, Le Friec G, Kemper C. Complement—tap-ping into new sites and effector systems[J]. Nat Rev Immunol, 2014, 14(12):811-820. [27] Maekawa T, Krauss JL, Abe T, et al. Porphyromonas gingivalis manipulates complement and TLR signa-ling to uncouple bacterial clearance from inflamma-tion and promote dysbiosis[J]. Cell Host Microbe, 2014, 15(6):768-778. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[7] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[8] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[9] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[10] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[11] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[12] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[13] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[14] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[15] | 李俊霖,肖立伟. 隐形矫治技术推磨牙远移机制与疗效的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 109-115. |
|