国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (2): 183-188.doi: 10.7518/gjkq.2017.02.014
伍颖颖,宫苹
Wu Yingying, Gong Ping.
摘要: 目的探索胰岛素治疗对于高糖环境下种植体周骨组织代谢及种植体-骨结合的影响。方法构建糖尿病大鼠模型,在大鼠股骨植入钛种植体,并给予胰岛素治疗;同时通过成骨细胞培养,体外构建高糖环境,给予胰岛素干预。结果糖尿病大鼠种植体周骨组织形成和矿化明显降低,胰岛素干预治疗能起到明显的改善作用;此外,胰岛素干预后成骨细胞中胰岛素受体表达明显增加。结论胰岛素也许通过胰岛素信号通路调控高糖环境中成骨细胞功能,改善骨组织的形成和矿化。
中图分类号:
5 5 参考文献 [1] Whiting DR, Guariguata L, Weil C, et al. IDF dia-betes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94(3):311-321. [2] Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function[J]. J Diabetes Complicat, 2010, 24(5):334- 344. [3] Al-Emadi A, Bissada N, Farah C, et al. Systemic diseases among patients with and without alveolar bone loss[J]. Quintessence Int, 2006, 37(10):761- 765. [4] Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, et al. Bone formation around titanium implants in the rat tibia: role of insulin[J]. Implant Dent, 2003, 12(3):242-251. [5] Holzhausen M, Garcia DF, Pepato MT, et al. The influence of short-term diabetes mellitus and insulin therapy on alveolar bone loss in rats[J]. J Periodont Res, 2004, 39(3):188-193. [6] Al Amri MD, Kellesarian SV, Al-Kheraif AA, et al. Effect of oral hygiene maintenance on HbA1c levels and peri-implant parameters around immediately-loaded dental implants placed in type-2 diabetic pa-tients: 2 years follow-up[J]. Clin Oral Implants Res, 2016, 27(11):1439-1443. [7] Oates TW Jr, Galloway P, Alexander P, et al. The effects of elevated hemoglobin A(1c) in patients with type 2 diabetes mellitus on dental implants: survival and stability at one year[J]. J Am Dent Assoc, 2014, 145(12):1218-1226. [8] Le Roith D, Zick Y. Recent advances in our unders-tanding of insulin action and insulin resistance[J]. Diabetes Care, 2001, 24(3):588-597. [9] Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell, 2010, 142(2):309-319. [10] Courtland HW, Sun H, Beth-On M, et al. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production[J]. J Bone Miner Res, 2011, 26(4):761-768. [11] Ogasawara A, Nakajima A, Nakajima F, et al. Mole-cular basis for affected cartilage formation and bone union in fracture healing of the streptozotocin-in-duced diabetic rat[J]. Bone, 2008, 43(5):832-839. [12] Liu Z, Zhou W, Tangl S, et al. Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats[J]. Br J Oral Maxillofac Surg, 2015, 53(8):748-753. [13] Chrcanovic BR, Albrektsson T, Wennerberg A. Dia-betes and oral implant failure: a systematic review[J]. J Dent Res, 2014, 93(9):859-867. [14] Verhaeghe J, Suiker AM, Visser WJ, et al. The effects of systemic insulin, insulin-like growth factor-Ⅰand growth hormone on bone growth and turnover in spontaneously diabetic BB rats[J]. J Endocrinol, 1992, 134(3):485-492. [15] McCracken MS, Aponte-Wesson R, Chavali R, et al. Bone associated with implants in diabetic and insulin-treated rats[J]. Clin Oral Implants Res, 2006, 17(5): 495-500. [16] Blüher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intole-rance[J]. Dev Cell, 2002, 3(1):25-38. [17] Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction[J]. Mol Cell, 2000, 6(1):87-97. [18] Fukumoto S, Martin TJ. Bone as an endocrine organ [J]. Trends Endocrinol Metab, 2009, 20(5):230-236. [19] Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism[J]. Trends Endocrinol Metab, 2008, 19(5):161-166. [20] Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass[J]. Cell Metab, 2006, 4(5):341-348. [21] Pun KK, Lau P, Ho PW. The characterization, re-gulation, and function of insulin receptors on osteo-blast-like clonal osteosarcoma cell line[J]. J Bone Miner Res, 1989, 4(6):853-862. |
[1] | 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673. |
[2] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[3] | 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551. |
[4] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[5] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[6] | 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11. |
[7] | 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384. |
[8] | 路泊遥,杨大维,刘蔚晴,梁星. 超短种植体临床应用效果的影响因素[J]. 国际口腔医学杂志, 2021, 48(3): 329-328. |
[9] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[10] | 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731. |
[11] | 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529. |
[12] | 童子安,姒蜜思. 种植体表面菌斑去污方式的体外研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 589-594. |
[13] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[14] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[15] | 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470. |
|