Int J Stomatol ›› 2019, Vol. 46 ›› Issue (3): 302-307.doi: 10.7518/gjkq.2019006

• Reviews • Previous Articles     Next Articles

Research progress on regulatory mechanism of the circadian clock genes on osteogenesis and bone resorption

Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo()   

  1. Dept. of Stomatology, The People’s Liberation Army General Hospital, Beijing 100853, China
  • Received:2018-08-21 Revised:2019-02-25 Online:2019-05-01 Published:2019-06-05
  • Contact: Bin Guo E-mail:guobin0408@126.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81470754)

Abstract:

The internal circadian timing system of human is a major regulatory network mainly interacting circadian genes for regulating 24 h rhythms of many metabolic and physiological processes. The dynamic balance of osteogenesis and bone resorption is the foundation of normal bone function. The circadian genes, which are closely related to osteogenesis and bone resorption, play an essential regulatory role in bone remolding and may be targets of bone regenerative medicine. This review focuses on the circadian timing system structure and the recent progress of research on regulatory mechanism of osteogenesis and bone resorption. We aim to possibly determine a novel approach for bone reconstruction and regenerative therapy.

Key words: biorhythms, circadian gene, osteogenic differentiation, osteoclast

CLC Number: 

  • Q753

TrendMD: 
[1] Dibner C, Schibler U, Albrecht U . The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010,72:517-549.
doi: 10.1146/annurev-physiol-021909-135821
[2] Fuhr L, Abreu M, Pett P , et al. Circadian systems biology: when time matters[J]. Comput Struct Biotechnol J, 2015,13:417-426.
doi: 10.1016/j.csbj.2015.07.001 pmid: 4534520
[3] Borgs L, Beukelaers P, Vandenbosch R , et al. Cell “circadian” cycle: new role for mammalian core clock genes[J]. Cell Cycle, 2009,8(6):832-837.
doi: 10.4161/cc.8.6.7869 pmid: 19221497
[4] Maury E, Hong HK, Bass J . Circadian disruption in the pathogenesis of metabolic syndrome[J]. Diabetes Metab, 2014,40(5):338-346.
doi: 10.1016/j.diabet.2013.12.005
[5] Mazzoccoli G, Pazienza V, Vinciguerra M . Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012,29(3):227-251.
doi: 10.3109/07420528.2012.658127
[6] Jagannath A, Taylor L, Wakaf Z , et al. The genetics of circadian rhythms, sleep and health[J]. Hum Mol Genet, 2017,26(R2):R128-R138.
doi: 10.1093/hmg/ddx240 pmid: 28977444
[7] Khaper N, Bailey CDC, Ghugre NR , et al. Implications of disturbances in circadian rhythms for cardiovascular health: a new frontier in free radical biology[J]. Free Radic Biol Med, 2018,119:85-92.
doi: 10.1016/j.freeradbiomed.2017.11.006 pmid: 29146117
[8] Samsa WE, Vasanji A, Midura RJ , et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016,84:194-203.
doi: 10.1016/j.bone.2016.01.006 pmid: 26789548
[9] Komoto S, Kondo H, Fukuta O , et al. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast[J]. Chronobiol Int, 2012,29(1):66-74.
doi: 10.3109/07420528.2011.636496 pmid: 17019725
[10] Song C, Wang J, Kim B , et al. Insights into the role of circadian rhythms in bone metabolism: a promising intervention target[J]. Biomed Res Int, 2018,2018:9156478.
doi: 10.1155/2018/9156478
[11] Reppert SM, Weaver DR . Coordination of circadian timing in mammals[J]. Nature, 2002,418(6901):935-941.
doi: 10.1038/nature00965 pmid: 12198538
[12] Yoo SH, Yamazaki S, Lowrey PL , et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues[J]. Proc Natl Acad Sci U S A, 2004,101(15):5339-5346.
doi: 10.1073/pnas.0308709101 pmid: 14963227
[13] Lowrey PL, Takahashi JS . Mammalian circadian biology: elucidating genome-wide levels of temporal organization[J]. Annu Rev Genomics Hum Genet, 2004,5:407-441.
doi: 10.1146/annurev.genom.5.061903.175925 pmid: 15485355
[14] Takahashi JS . Molecular components of the circadian clock in mammals[J]. Diabetes Obes Metab, 2015,17(Suppl 1):6-11.
doi: 10.1111/dom.12514 pmid: 26332962
[15] Luo W, Li Y, Tang CH , et al. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila[J]. Genes Dev, 2012,26(22):2536-2549.
doi: 10.1101/gad.200584.112 pmid: 23154984
[16] Robles MS, Humphrey SJ, Mann M . Phosphorylation is a central mechanism for circadian control of metabolism and physiology[J]. Cell Metab, 2017,25(1):118-127.
doi: 10.1016/j.cmet.2016.10.004 pmid: 27818261
[17] Preitner N, Damiola F, Lopez-Molina L , et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator[J]. Cell, 2002,110(2):251-260.
doi: 10.1016/S0092-8674(02)00825-5 pmid: 12150932
[18] Murray IR, West CC, Hardy WR , et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels[J]. Cell Mol Life Sci, 2014,71(8):1353-1374.
doi: 10.1007/s00018-013-1462-6 pmid: 24158496
[19] Weger M, Diotel N, Dorsemans AC , et al. Stem cells and the circadian clock[J]. Dev Biol, 2017,431(2):111-123.
doi: 10.1016/j.ydbio.2017.09.012 pmid: 28899666
[20] Boucher H, Vanneaux V, Domet T , et al. Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle[J]. PLoS One, 2016,11(1):e0146674.
doi: 10.1371/journal.pone.0146674 pmid: 4704833
[21] Meyer T, Kneissel M, Mariani J , et al. In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism[J]. Proc Natl Acad Sci U S A, 2000,97(16):9197-9202.
doi: 10.1073/pnas.150246097 pmid: 10900268
[22] He Y, Lin F, Chen Y , et al. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis[J]. Stem Cells Dev, 2015,24(10):1194-1204.
doi: 10.1089/scd.2014.0437 pmid: 25539035
[23] Li X, Liu N, Wang Y , et al. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes[J]. Mol Cell Endocrinol, 2017,440:93-105.
doi: 10.1016/j.mce.2016.10.001
[24] Sahar S, Zocchi L, Kinoshita C , et al. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation[J]. PLoS One, 2010,5(1):e8561.
doi: 10.1371/journal.pone.0008561 pmid: 2797305
[25] Marcheva B, Ramsey KM, Buhr ED , et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010,466(7306):627-631.
doi: 10.1038/nature09253 pmid: 2920067
[26] Sato F, Sato H, Jin D , et al. Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver[J]. Biochem Biophys Res Commun, 2012,419(2):441-446.
doi: 10.1016/j.bbrc.2012.02.076 pmid: 22382019
[27] Spengler ML, Kuropatwinski KK, Comas M , et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription[J]. Proc Natl Acad Sci U S A, 2012,109(37):E2457-E2465.
doi: 10.1073/pnas.1206274109
[28] 龙洁, 田卫东, 郑晓辉 , 等. 牵张成骨对山羊下颌骨成骨细胞增殖节律的影响[J]. 华西口腔医学杂志, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020
Long J, Tian WD, Zheng XH , et al. Effect of distraction osteogenesis on circadian rhythm of proliferation index of mandibular osteoblast in goat[J]. West Chin J Stomatol, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020
[29] Wang Y, Nizkorodov A, Riemenschneider K , et al. Impaired bone formation in Pdia3 deficient mice[J]. PLoS One, 2014,9(11):e112708.
doi: 10.1371/journal.pone.0112708 pmid: 25405762
[30] Santana-Codina N, Carretero R, Sanz-Pamplona R , et al. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis[J]. Mol Cell Proteomics, 2013,12(8):2111-2125.
doi: 10.1074/mcp.M112.022772
[31] Yuan G, Hua B, Yang Y , et al. The circadian gene clock regulates bone formation via PDIA3[J]. J Bone Miner Res, 2017,32(4):861-871.
doi: 10.1002/jbmr.3046 pmid: 27883226
[32] Fu L, Patel MS, Karsenty G . The circadian modulation of leptin-controlled bone formation[J]. Prog Brain Res, 2006,153:177-188.
doi: 10.1016/S0079-6123(06)53010-9
[33] Hirai T . Regulation of clock genes by adrenergic receptor signaling in osteoblasts[J]. Neurochem Res, 2018,43(1):120-126.
doi: 10.1007/s11064-017-2365-y pmid: 28752422
[34] Hirai T, Tanaka K, Togari A . β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts[J]. J Cell Sci, 2014,127(Pt 17):3711-3719.
doi: 10.1242/jcs.148148 pmid: 24994935
[35] Hirai T, Tanaka K, Togari A . α1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4)[J]. J Biol Chem, 2014,289(24):17174-17183.
doi: 10.1074/jbc.M113.546135
[36] Takeda S, Elefteriou F, Levasseur R , et al. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell, 2002,111(3):305-317.
doi: 10.1016/S0092-8674(02)01049-8 pmid: 12419242
[37] Min HY, Kim KM, Wee G , et al. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells[J]. Life Sci, 2016,162:41-46.
doi: 10.1016/j.lfs.2016.08.002 pmid: 27506892
[38] Cappellen D, Luong-Nguyen NH, Bongiovanni S , et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B[J]. J Biol Chem, 2002,277(24):21971-21982.
doi: 10.1074/jbc.M200434200 pmid: 11923298
[39] Xu C, Ochi H, Fukuda T , et al. Circadian clock regulates bone resorption in mice[J]. J Bone Miner Res, 2016,31(7):1344-1355.
doi: 10.1002/jbmr.2803 pmid: 26841172
[40] Fujihara Y, Kondo H, Noguchi T , et al. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes[J]. Bone, 2014,61:1-9.
doi: 10.1016/j.bone.2013.12.026 pmid: 24389417
[41] Kearns AE, Khosla S, Kostenuik PJ . Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev, 2008,29(2):155-192.
doi: 10.1210/er.2007-0014
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[3] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[6] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
[7] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[8] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[9] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[10] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[11] Fu Shijin,Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling. Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells [J]. Int J Stomatol, 2020, 47(5): 538-546.
[12] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[13] Yang Peipei,Yang Yuchen,Zhang Qiang. Advances in the mechanism and effect of nicotine on alveolar osteoclasts [J]. Int J Stomatol, 2020, 47(5): 616-620.
[14] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[15] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .