国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 329-332.doi: 10.7518/gjkq.2016.03.017

• 综述 • 上一篇    下一篇

低强度脉冲超声在牙周组织再生中的作用

李紫嫣,李鑫,周进茹,李磊   

  1. 口腔疾病研究国家重点实验室 华西口腔医院修复科(四川大学) 成都 610041
  • 收稿日期:2015-07-17 修回日期:2016-01-28 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 李磊,副教授,博士,Email:geraldleelei@163.com
  • 作者简介:李紫嫣,硕士,Email:445821974@qq.com

Effects of low-intensity pulsed ultrasound in periodontal tissue regeneration

Li Ziyan, Li Xin, Zhou Jinru, Li Lei   

  1. State Key Laboratory of Oral Diseases, Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-07-17 Revised:2016-01-28 Online:2016-05-01 Published:2016-05-01

摘要: 牙周病、根面龋以及颌面先天畸形和创伤等都会不同程度地导致牙槽骨、牙龈和牙周膜等牙周支持组织缺损。低强度脉冲超声(LIPUS)的温热效应和机械刺激可促进成骨质细胞、成牙本质细胞和牙周膜细胞(PDLC)的生成和分化。PDLC可分化成中胚层细胞谱系,进而生成牙槽骨、牙骨质和牙周膜等牙周组织。碱性磷酸酶(AKP)和骨钙蛋白(OCN)为骨形成或骨分化的晚期标志物,经LIPUS刺激过的PDLC,其AKP活性和OCN的表达皆提高。经LIPUS刺激可减少正畸过程中牙根的吸收,促进修复牙根缺损的成牙骨质细胞的增殖分化和矿化,促进牙周组织伤口愈合和血管生成的结缔组织生长因子的表达,从而加速牙周软组织的愈合。LIPUS刺激在牙周支持组织再生中为一种安全无创的治疗手段,但其最佳刺激强度和治疗时间尚需继续探索。

关键词: 低强度脉冲超声, 牙周组织, 再生, 低强度脉冲超声, 牙周组织, 再生

Abstract: Periodontal disease, root caries, maxillofacial deformity, and trauma will cause defects in periodontal supporting tissue, such as alveolar bone, gingiva, and periodontium. Low-intensity pulsed ultrasound(LIPUS) can generate hyperthermia and mechanical stimulation, which can promote the generation and differentiation of cementoblast, odontoblast, and periodontal ligament cell(PDLC). PDLC can differentiate into mesodermal lineages and subsequently generate alveolar bone, cementum, and periodontium. Alkaline phosphatase(AKP) and osteocalcin(OCN) are the advanced markers of osteogenesis and osteogenic differentiation. LIPUS-stimulated PDLC shows improved AKP activity and OCN expression. LIPUS can also decrease the root absorption during orthodontic treatment; accelerate the proliferation, differentiation, and mineralization of cementoblast, which can repair root defects; and improve the expression of connective tissue growth factor that can accelerate angiogenesis and healing of periodontal tissue. LIPUS, as a safe and non-invasive treatment, can be applied in periodontal tissue regeneration. However, further research should be conducted to determine the most suitable stimulation intensity and treatment time.

Key words: low-intensity pulsed ultrasound, periodontium, regeneration, low-intensity pulsed ultrasound, periodontium, regeneration

中图分类号: 

  • R 781.4
[1] Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities[J]. Tissue Eng Part B Rev, 2010, 16(2):219-255.
[2] Needleman IG, Worthington HV, Giedrys-Leeper E, et al. Guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2006(2):CD001724.
[3] Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review[J]. Ultrasound Med Biol, 2009, 35(4):529-536.
[4] Malizos KN, Hantes ME, Protopappas V, et al. Lowintensity pulsed ultrasound for bone healing: an overview[J]. Injury, 2006, 37(Suppl 1):S56-S62.
[5] Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J]. J Bone Miner Res, 2001, 16(4):671-680.
[6] Chang WH, Sun JS, Chang SP, et al. Study of thermal effects of ultrasound stimulation on fracture healing [J]. Bioelectromagnetics, 2002, 23(4):256-263.
[7] Welgus HG, Jeffrey JJ, Eisen AZ. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates[J]. J Biol Chem, 1981, 256(18):9516-9521.
[8] Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound[J]. J Ultrasound Med, 2003, 22(2):145-153.
[9] Claes L, Willie B. The enhancement of bone regeneration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3):384-398.
[10] Mostafa NZ, Uluda? H, Dederich DN, et al. Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts[J]. Arch Oral Biol, 2009, 54(8):743-748.
[11] Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429):149-155.
[12] Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bonederived mesenchymal stem cells for tooth tissue engineering[J]. Biomed Res Int, 2013:269724.
[13] Bains VK, Mohan R, Bains R. Application of ultrasound in periodontics: PartⅡ[J]. J Indian Soc Periodontol, 2008, 12(3):55-61.
[14] Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem Cells, 2008, 26(4):1065-1073.
[15] Washio K, Iwata T, Mizutani M, et al. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study[J]. Cell Tissue Res, 2010, 341(3):397-404.
[16] Ciavarella S, Dammacco F, De Matteo M, et al. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts[J]. Stem Cells Dev, 2009, 18(8):1211-1220.
[17] Hu B, Zhang Y, Zhou J, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells[J]. PLoS One, 2014, 9(4):e95168.
[18] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007, 130(3):456-469.
[19] Bharadwaj S, Naidu AG, Betageri GV, et al. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women[J]. Osteoporos Int, 2009, 20(9):1603-1611.
[20] Eriksen EF. Cellular mechanisms of bone remodeling[J]. Rev Endocr Metab Disord, 2010, 11(4):219-227.
[21] Yang Y, Yang Y, Li X, et al. Functional analysis of core binding factor a1 and its relationship with related genes expressed by human periodontal ligament cells exposed to mechanical stress[J]. Eur J Orthod, 2010, 32(6):698-705.
[22] Li L, Han M, Li S, et al. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013, 32(9):488-497.
[23] Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members[J]. Annu Rev Pharmacol Toxicol, 2002, 42:283-323.
[24] Palaiologou AA, Yukna RA, Moses R, et al. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors[J]. J Periodontol, 2001, 72(6):798-807.
[25] Ren L, Yang Z, Song J, et al. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells[J]. Ultrasonics, 2013, 53(3):686-690.
[26] El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2):186-193.
[27] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype[J]. J Dent Res, 2005, 84(5):390-406.
[28] Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells[J]. Crit Rev Oral Biol Med, 2001, 12(5):414-424.
[29] Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4):318-323.
[30] Rego EB, Inubushi T, Kawazoe A, et al. Ultrasound stimulation induces PGE(2)synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway[J]. Ultrasound Med Biol, 2010, 36(6):907-915.
[31] Rego EB, Inubushi T, Miyauchi M, et al. Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro[J]. J Periodont Res, 2011, 46(6):648-654.
[32] Ikai H, Tamura T, Watanabe T, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery[J]. J Periodont Res, 2008, 43(2):212-216.
[33] Shiraishi R, Masaki C, Toshinaga A, et al. The effects of low-intensity pulsed ultrasound exposure on gingival cells[J]. J Periodontol, 2011, 82(10):1498-1503.
(本文采编 王晴)
[1] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[2] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[3] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[4] 孙兆泽,刘双,李纾. 神经导向分子及其在口腔组织再生中的作用[J]. 国际口腔医学杂志, 2019, 46(6): 680-686.
[5] 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325.
[6] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[7] 江义笛,汪成林,叶玲. 再生性牙髓治疗的并发症[J]. 国际口腔医学杂志, 2019, 46(1): 73-77.
[8] 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672.
[9] 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677.
[10] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[11] 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559.
[12] 朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448.
[13] 林云锋, 李松航. DNA折纸技术在干细胞领域应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 249-254.
[14] 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58.
[15] 关巍, 汪昌宁. 脱细胞异体真皮基质在牙周病学中的应用[J]. 国际口腔医学杂志, 2017, 44(6): 669-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 叶年嵩 王晟综述 赖文莉审校. 非综合征性先天缺牙相关基因的研究进展[J]. 国际口腔医学杂志, 2011, 38(4): 416 -418 .