国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 417-425.doi: 10.7518/gjkq.2021070

• 论著 • 上一篇    下一篇

颞下颌关节退行性变早期髁突软骨细胞行为改变的实验研究

方苓力(),谭玺,叶雨丝,黄兰,何瑶()   

  1. 重庆医科大学附属口腔医院 口腔疾病与生物医学重庆市重点实验室重庆市高校市级口腔生物医学工程重点实验室 重庆 401147
  • 收稿日期:2021-01-11 修回日期:2021-04-06 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 何瑶
  • 作者简介:方苓力,住院医师,硕士,Email: 2018110874@stu.cqmu.edu.cn
  • 基金资助:
    国家自然科学基金(31800786);中国博士后基金面上项目(2018M640902)

Experimental study on behavior changes of condylar chondrocytes in early stage of temporomandibular joint degeneration

Fang Lingli(),Tan Xi,Ye Yusi,Huang Lan,He Yao()   

  1. Stomatological Hospital of Chongqing Medical University & Chongqing Key Laboratory of Oral Diseases and Biomedical Science & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
  • Received:2021-01-11 Revised:2021-04-06 Online:2021-07-01 Published:2021-06-30
  • Contact: Yao He
  • Supported by:
    National Natural Science Foundation of China(31800786);General projects of China Postdoctoral fund(2018M640902)

摘要:

目的 探索应力诱导颞下颌关节(TMJ)退行性变早期,髁突软骨细胞增殖、凋亡和自噬行为表现及相关信号通路的变化。方法 使用小鼠强制张口模型分别对小鼠加力0 d(对照组)和10 d(实验组),加力结束后取样。髁突软骨行激光共聚焦扫描,5-乙炔基-2’脱氧尿嘧啶核苷(EdU)染色检测增殖;完整关节区切片行苏木精/伊红、甲苯胺蓝以及免疫组化染色检测增殖、凋亡、自噬及磷脂酰肌醇3-激酶/丝氨酸/苏氨酸蛋白激酶(PI3K/Akt)通路关键蛋白的表达。结果 实验组小鼠与对照组小鼠相比,髁突软骨增厚,细胞密度降低,基质分泌减少;且增殖和凋亡阳性细胞增多,自噬活性增加;伴随PI3K/Akt通路活化。结论 应力诱导TMJ退行性变早期,软骨细胞在增殖、凋亡及自噬活性上均有一定程度的激活,并伴随了PI3K/Akt通路活化。

关键词: 应力, 髁突软骨, 退行性变, 自噬

Abstract:

Objective To explore the biological behavioural changes in the proliferation, apoptosis and autophagy of condylar chondrocytes and changes in the related signal pathway in the early stage of cartilage degeneration under stress.Methods The forced mouth opening model was used, and samples were taken after 0 d (control group) and 10 d (experiment group) of inducing overloading force. After the laser confocal scanning of the condylar cartilage, 5-ethynyl-2’-deoxyuridine (EdU) staining was performed to detect cell proliferation. The expression of proliferation, apoptosis, autophagy and key proteins of the phosphatidylinositol 3-kinase/ protein kinase B (PI3K/Akt) pathway was detected by haematoxylin/eosin, toluidine blue and immunohistochemical stainings with paraffin sections of the intact temporomandibular joint. Results The thickness of the condylar cartilage increased, but the cell density and cartilage matrix secretion decreased in the experimental group. In addition, the number of proliferation and apoptosis positive cells and the expression of autophagy markers increased. At the same time, the PI3K/Akt pathway was also active. Conclusion The prolife-ration, apoptosis and autophagy activity of chondrocytes were activated to some extent in the early stage of cartilage degeneration induced by stress, with the activation of the PI3K/Akt pathway.

Key words: stress, condyle cartilage, degeneration, autophagy

中图分类号: 

  • R782.6

图1

应力刺激下TMJ软骨的组织形态学表现 A~B:强制张口模型及流程模式图;C~F:伊红-苏木素染色(黑框表示放大区域E和F);G~H:甲苯胺蓝染色;I~J:激光共聚焦扫描重建图;Con:对照组,Ex:实验组。"

图2

TMJ软骨的基质表达变化 A~C:蛋白聚糖免疫组化染色及IOD值统计图;D~F:Ⅱ型胶原免疫组化染色及IOD值统计图;G~I:基质金属蛋白酶13免疫组化染色及IOD值统计图;Con:对照组,Ex:实验组。"

图3

TMJ软骨细胞在应力作用下的增殖与凋亡表现 A~C:冰冻切片EdU染色(红色标记阳性细胞)及阳性细胞统计图;D~F:PCNA免疫组化染色及IOD值统计图;G~I:caspase3免疫组化染色及IOD值统计图;Con:对照组,Ex:实验组。"

图4

应力作用下髁突软骨细胞中自噬的表达 A~C:Beclin1免疫组化染色及IOD值统计图;D~F:LC3免疫组化染色及IOD值统计图;Con:对照组;Ex:实验组。"

图5

p-Akt及p-mTOR在应力诱导的TMJ软骨中的表达 A~C:p-Akt免疫组化染色及IOD值统计图;D~F:p-mTOR免疫组化染色及IOD值统计图;Con:对照组;Ex:实验组。"

[1] Wang XD, Zhang JN, Gan YH, et al. Current understanding of pathogenesis and treatment of TMJ osteoarthritis[J]. J Dent Res, 2015,94(5):666-673.
doi: 10.1177/0022034515574770
[2] Wieckiewicz M, Boening K, Wiland P, et al. Reported concepts for the treatment modalities and pain m-anagement of temporomandibular disorders[J]. J Headache Pain, 2015,16:106.
doi: 10.1186/s10194-015-0586-5 pmid: 26644030
[3] Ernberg M. The role of molecular pain biomarkers in temporomandibular joint internal derangement[J]. J Oral Rehabil, 2017,44(6):481-491.
doi: 10.1111/joor.12480 pmid: 28054366
[4] Zhang SP, Teo KYW, Chuah SJ, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019,200:35-47.
doi: 10.1016/j.biomaterials.2019.02.006
[5] Kurio N, Saunders C, Bechtold TE, et al. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage[J]. Matrix Biol, 2018,67:15-31.
doi: 10.1016/j.matbio.2018.02.011
[6] Koyama E, Saunders C, Salhab I, et al. Lubricin is required for the structural integrity and post-natal maintenance of TM[J]. J Dent Res, 2014,93(7):663-670.
doi: 10.1177/0022034514535807
[7] Sperry MM, Yu YH, Kartha S, et al. Intra-articular etanercept attenuates pain and hypoxia from TMJ loading in the rat[J]. J Orthop Res, 2020,38(6):1316-1326.
doi: 10.1002/jor.v38.6
[8] Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment[J]. J Dent Res, 2008,87(4):296-307.
pmid: 18362309
[9] 康宏. 颞下颌关节的生物力学[J]. 生物医学工程学杂志, 2000,17(3):324-327, 345.
Kang H. Biomechanics of temporomandibular joint[J]. J Biomed Eng, 2000,17(3):324-327, 345.
[10] Tanaka E, Koolstra JH. Biomechanics of the temporomandibular joint[J]. J Dent Res, 2008,87(11):989-991.
doi: 10.1177/154405910808701101
[11] Sobue T, Yeh WC, Chhibber A, et al. Murine TMJ loading causes increased proliferation and chondrocyte maturation[J]. J Dent Res, 2011,90(4):512-516.
doi: 10.1177/0022034510390810
[12] Utreja A, Dyment NA, Yadav S, et al. Cell and matrix response of temporomandibular cartilage to mechanical loading[J]. Osteoarthritis Cartilage, 2016,24(2):335-344.
doi: 10.1016/j.joca.2015.08.010
[13] Tanaka E, Aoyama J, Miyauchi M, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis[J]. Histochem Cell Biol, 2005,123(3):275-281.
pmid: 15856277
[14] Fujisawa T, Kuboki T, Kasai T, et al. A repetitive, steady mouth opening induced an osteoarthritis-like lesion in the rabbit temporomandibular joint[J]. J D-ent Res, 2003,82(9):731-735.
[15] Ou FR, Su K, Sun JD, et al. Temporomandibular joint disorders contribute to anxiety in BalB/C mice[J]. Biochem Biophys Res Commun, 2019,516(2):339-343.
doi: 10.1016/j.bbrc.2019.06.050
[16] Fujita M, Sato-Shigeta M, Mori H, et al. Protective effects of low-intensity pulsed ultrasound on mandibular condylar cartilage exposed to mechanical overloading[J]. Ultrasound Med Biol, 2019,45(4):944-953.
doi: 10.1016/j.ultrasmedbio.2018.12.006
[17] Liu Q, Yang HX, Duan J, et al. Bilateral anterior elevation prosjournal boosts chondrocytes proliferation in mice mandibular condyle[J]. Oral Dis, 2019,25(6):1589-1599.
doi: 10.1111/odi.v25.6
[18] Shen C, Cai GQ, Peng JP, et al. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling[J]. Osteoarthritis Cartilage, 2015,23(12):2279-2287.
doi: 10.1016/j.joca.2015.06.020
[19] Yang HX, Wen Y, Zhang M, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint[J]. Autophagy, 2020,16(2):271-288.
doi: 10.1080/15548627.2019.1606647
[20] Chang J, Wang W, Zhang H, et al. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarth-ritis[J]. Int J Mol Med, 2013,32(6):1311-1318.
doi: 10.3892/ijmm.2013.1520
[21] Zhang M, Zhang J, Lu L, et al. Enhancement of chondrocyte autophagy is an early response in the degenerative cartilage of the temporomandibular joint to biomechanical dental stimulation[J]. Apoptosis, 2013,18(4):423-434.
doi: 10.1007/s10495-013-0811-0 pmid: 23386193
[22] Chen H, Wu GY, Sun Q, et al. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β‒induced apoptosis via the PI3K/AKT signaling pathway[J]. Am J Transl Res, 2016,8(11):5108-5117.
[23] Zhang QB, Lai SX, Hou XY, et al. Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury[J]. Am J Transl Res, 2018,10(3):762-770.
[24] Cravero JD, Carlson CS, Im HJ, et al. Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synjournal[J]. Arthritis Rheum, 2009,60(2):492-500.
doi: 10.1002/art.v60:2
[25] Portal-Núñez S, Esbrit P, Alcaraz MJ, et al. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis[J]. Biochem Pharmacol, 2016,108:1-10.
[26] He Y, Zhang M, Huang AY, et al. Confocal imaging of mouse mandibular condyle cartilage[J]. Sci Rep, 2017,7:43848.
doi: 10.1038/srep43848
[27] Liu WJ, Luo HY, Wang RL, et al. Rapamycin-induced autophagy promotes the chondrogenic differentiation of synovium-derived mesenchymal stem cells in the temporomandibular joint in response to IL-1β[J]. Biomed Res Int, 2020,2020:4035306.
[28] Jing JJ, Hinton RJ, Mishina Y, et al. Critical role of Bmpr1a in mandibular condyle growth[J]. Connect Tissue Res, 2014,55(Suppl 1):73-78.
doi: 10.3109/03008207.2014.923858
[29] Ogasawara N, Kano F, Hashimoto N, et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis[J]. Osteoarthritis Cartilage, 2020,28(6):831-841.
doi: 10.1016/j.joca.2020.03.010
[30] Ma DD, Kou XX, Jin J, et al. Hydrostatic compress force enhances the viability and decreases the apoptosis of condylar chondrocytes through integrin-FAK-ERK/PI3K pathway[J]. Int J Mol Sci, 2016,17(11):E1847.
[31] Grishko V, Xu M, Ho R, et al. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes[J]. J Biol Chem, 2009,284(14):9132-9139.
doi: 10.1074/jbc.M804178200
[32] Yan XF, Wu HX, Wu ZY, et al. The new synthetic H2S-releasing SDSS protects MC3T3-E1 osteoblasts against H2O2-induced apoptosis by suppressing oxidative stress, inhibiting MAPKs, and activating the PI3K/akt pathway[J]. Front Pharmacol, 2017,8:7.
[33] Zhang QB, Lai SX, Hou XY, et al. Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury[J]. Am J Transl Res, 2018,10(3):762-770.
[34] Xiao ZH, Wang JK, Chen SY, et al. Autophagy promotion enhances the protective effect of morroniside on human OA chondrocyte[J]. Biosci Biotechnol Biochem, 2020,84(5):989-996.
doi: 10.1080/09168451.2020.1717925
[35] Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein[J]. Cell Res, 2007,17(10):839-849.
doi: 10.1038/cr.2007.78
[36] Arai A, Kim S, Goldshteyn V, et al. Beclin1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation[J]. J Bone Miner Res, 2019,34(9):1753-1766.
doi: 10.1002/jbmr.v34.9
[37] Yang ZM, Tang YX, Lu HD, et al. Long non-coding RNA reprogramming (lncRNA-ROR) regulates cell apoptosis and autophagy in chondrocytes[J]. J Cell Biochem, 2018,119(10):8432-8440.
doi: 10.1002/jcb.v119.10
[38] Shanware NP, Bray K, Abraham RT. The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease[J]. Annu Rev Pharmacol Toxicol, 2013,53:89-106.
doi: 10.1146/annurev-pharmtox-010611-134717
[39] Mupparapu M, Oak S, Chang YC, et al. Conventional and functional imaging in the evaluation of temporomandibular joint rheumatoid arthritis: a systematic review[J]. Quintessence Int, 2019,50(9):742-753.
doi: 10.3290/j.qi.a43046 pmid: 31482155
[40] Morales H, Cornelius R. Imaging approach to temporomandibular joint disorders[J]. Clin Neuroradiol, 2016,26(1):5-22.
doi: 10.1007/s00062-015-0465-0 pmid: 26374243
[41] Bianchi J, de Oliveira Ruellas AC, Gonçalves JR, et al. Osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning[J]. Sci Rep, 2020,10:8012.
doi: 10.1038/s41598-020-64942-0
[1] 孟秀萍,侯建华,李怡然,孙梦瑶. 龈壁提升术材料选择及边缘设计的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 280-286.
[2] 周丰,陈野,陈晨,张奕宁,耿瑞蔓,刘戟. 沉默信息调节因子1调控牙周炎发生发展的机制[J]. 国际口腔医学杂志, 2021, 48(3): 341-346.
[3] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634.
[4] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[5] 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89.
[6] 颜丹,张锡忠,王建国. 螺纹深度对支抗微种植体和颌骨影响的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(4): 387-392.
[7] 黄璐,钱捷. 三维有限元在嵌体修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 728-733.
[8] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
[9] 张晓, 邓青完, 杜琼, 谢静. 主桩辅桩联合修复对前磨牙应力的有限元分析[J]. 国际口腔医学杂志, 2017, 44(5): 559-565.
[10] 曹国庆, 王林霞, 杜莉平. 有限元法在桩核冠修复研究中的应用[J]. 国际口腔医学杂志, 2017, 44(2): 209-213.
[11] 陈冠辉 侯劲松. 低氧和自噬与肿瘤的发生发展[J]. 国际口腔医学杂志, 2016, 43(5): 584-588.
[12] 任静宜1 刘歆婵1 丁烨1 于洪强1 周延民1 于维先2. 细胞自噬和炎症反应的相互调控与牙周炎[J]. 国际口腔医学杂志, 2016, 43(4): 462-467.
[13] 陈潇 闫宝勇 左艳萍 盛海莹 苑学微. 整合素β1在大鼠髁突软骨力学适应性改建过程中的表达[J]. 国际口腔医学杂志, 2014, 41(4): 383-386.
[14] 金淑芳 蒋灿华. 细胞自噬相关蛋白8及其连接系统与头颈部恶性肿瘤[J]. 国际口腔医学杂志, 2014, 41(2): 195-198.
[15] 张强1 李英2. Ⅱ类骨质中平台转换种植体植入深度对周围骨应力影响的有限元分析[J]. 国际口腔医学杂志, 2014, 41(1): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[3] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[4] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[5] 孙兰英1 王其宝1 包崇云2 葛文章1 杜毅1. 碱性磷酸酶mRNA 在体内组织工程骨中的表达[J]. 国际口腔医学杂志, 2011, 38(4): 388 -391 .
[6] 叶年嵩 王晟综述 赖文莉审校. 非综合征性先天缺牙相关基因的研究进展[J]. 国际口腔医学杂志, 2011, 38(4): 416 -418 .
[7] 赵熠1 蔡育2综述 王贻宁1审校. 破骨细胞前体细胞的研究进展[J]. 国际口腔医学杂志, 2011, 38(6): 670 -673 .
[8] 周晗 张陶 岳源 乔梦婷 李燕 肖丽英. 葡萄多酚和茶多酚抗变异链球菌活性的比较[J]. 国际口腔医学杂志, 2011, 38(6): 643 -648 .
[9] 昝琳, 林宝山, 邓潇, 陈嵩. 不同生长期安氏Ⅱ类1 分类错牙合畸形患者非拔牙矫治的疗效评估[J]. 国际口腔医学杂志, 2009, 36(3): 276 -280 .
[10] 王晓婧 朱卓立 于海洋. 微振动对血管内皮细胞增殖和分化的影响[J]. 国际口腔医学杂志, 2013, 40(3): 288 -290 .