国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (6): 661-668.doi: 10.7518/gjkq.2020070

• 综述 • 上一篇    下一篇

辅助性T细胞17与牙周炎骨免疫

吕辉1,2(),王华1,孙雯1()   

  1. 1.江苏省口腔疾病研究重点实验室 南京 210029
    2.南京医科大学口腔医学院 南京 211166
  • 收稿日期:2019-11-22 修回日期:2020-04-21 出版日期:2020-11-01 发布日期:2020-11-06
  • 通讯作者: 孙雯
  • 作者简介:吕辉,学士,Email: 15951239990@163.com
  • 基金资助:
    国家自然科学基金面上项目(81670965);国家自然科学基金面上项目(81970961);江苏省自然科学基金杰出青年基金(BK20180034)

T helper cell 17 and periodontitis related osteoimmunology

Lü Hui1,2(),Wang Hua1,Sun Wen1()   

  1. 1. Jiangsu Key Laboratory of Oral Disease, Nanjing 210029, China
    2. School of Stomatology, Nanjing Medical University, Nanjing 211166, China
  • Received:2019-11-22 Revised:2020-04-21 Online:2020-11-01 Published:2020-11-06
  • Contact: Wen Sun
  • Supported by:
    General Program of National Natural Science Foundation of China(81670965);General Program of National Natural Science Foundation of China(81970961);Jiangsu Natural Science Foundation for Distinguished Young Scholars(BK20180034)

摘要:

辅助性T(Th)细胞17是一种能够分泌白细胞介素(IL)-17的T细胞亚群。Th17细胞在固有免疫和适应性免疫中发挥重要的作用;同时,Th17细胞也可以通过分泌多种特征细胞因子和蛋白质,参与牙周炎骨免疫进程。牙周炎是最为常见的口腔炎性疾病之一,牙周炎骨丧失是病原微生物与局部刺激因素引起的直接损伤和宿主对持续存在的菌斑微生物产生免疫应答所引起的间接损伤共同作用的结果,而Th17细胞在其中担任重要角色。本文回顾Th17细胞的分化过程及其影响因素,并就Th17细胞在骨免疫中的作用,尤其是对间充质干细胞、成骨细胞和破骨细胞的作用机制进行综述。

关键词: 辅助性T细胞17, 牙周炎, 骨免疫, 间充质干细胞, 成骨细胞, 破骨细胞

Abstract:

T helper cell 17 (Th17), a T cell subset capable of secreting interleukin-17, plays an important role in innate and adaptive immunity and participates in the osteoimmunology of periodontitis by secreting various characteristic cytokines and proteins. Periodontitis is one of the most common inflammatory oral diseases. Periodontitis-related bone loss results from a direct damage caused by pathogenic microorganisms and local stimulating factors and from an indirect damage caused by immune response of host to persistent plaque microorganisms, in which Th17 cell plays an important role. This review aimed to determine the differentiation process of Th17 cell and its influencing factors and explore the role of Th17 cells in bone immunity, especially its influence on mesenchymal stem cells, osteoblasts and osteoclasts.

Key words: T helper cell 17, periodontitis, osteoimmunology, mesenchymal stem cell, osteoblast, osteoclast

中图分类号: 

  • R781.4+2

图1

Th17 细胞在牙周炎骨免疫中的作用"

[1] Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition[J]. J Perio-dontol, 2018,89(Suppl 1):S159-S172.
[2] 吕慧欣, 杜留熠, 王鹞, 等. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019,46(2):186-190.
Lü HX, Du LY, Wang Y, et al. Research progress on inflammasome in periodontitis[J]. Int J Stomatol, 2019,46(2):186-190.
[3] Berlin-Broner Y, Febbraio M, Levin L. Apical perio-dontitis and atherosclerosis: is there a link review of the literature and potential mechanism of linkage[J]. Quintessence Int, 2017,48(7):527-534.
doi: 10.3290/j.qi.a38162 pmid: 28462408
[4] Leira Y, Seoane J, Blanco M, et al. Association be-tween periodontitis and ischemic stroke: a systematic review and meta-analysis[J]. Eur J Epidemiol, 2017,32(1):43-53.
doi: 10.1007/s10654-016-0170-6 pmid: 27300352
[5] Moghadam SA, Shirzaiy M, Risbaf S. The associa-tions between periodontitis and respiratory disease[J]. J Nepal Health Res Counc, 2017,15(1):1-6.
doi: 10.3126/jnhrc.v15i1.18023 pmid: 28714484
[6] Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Post-grad Med, 2018,130(1):98-104.
[7] Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe periodontitis in 1990-2010[J]. J Dent Res, 2014,93(11):1045-1053.
pmid: 25261053
[8] Kurgan S, Kantarci A. Molecular basis for immuno-histochemical and inflammatory changes during pro- gression of gingivitis to periodontitis[J]. Periodontol 2000, 2018,76(1):51-67.
pmid: 29194785
[9] Liu YCG, Lerner UH, Teng YTA. Cytokine respo-nses against periodontal infection: protective and destructive roles[J]. Periodontol 2000, 2010,52(1):163-206.
[10] 许丽华, 许尧生, 杨冬茹. 辅助性T细胞亚群与牙周炎的免疫损伤机制[J]. 国际口腔医学杂志, 2017,44(1):98-102.
Xu LH, Xu YS, Yang DR. The role of help T cells in periodontal immunoresponses and tissue destruction[J]. Int J Stomatol, 2017,44(1):98-102.
[11] Meyle J, Dommisch H, Groeger S, et al. The innate host response in caries and periodontitis[J]. J Clin Periodontol, 2017,44(12):1215-1225.
pmid: 28727164
[12] Tsukasaki M, Komatsu N, Nagashima K, et al. Host defense against oral microbiota by bone-damaging T cells[J]. Nat Commun, 2018,9(1):701.
pmid: 29453398
[13] 刘梦余, 叶玲, 汪成林. 白细胞介素-17及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2015,42(6):728-732.
Liu MY, Ye L, Wang CL. Interleukin-17 and its role in the oral diseases[J]. Int J Stomatol, 2015,42(6):728-732.
[14] Cardoso CR, Garlet GP, Crippa GE, et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease[J]. Oral Micro-biol Immunol, 2009,24(1):1-6.
[15] Tsilingaridis G, Yucel-Lindberg T, Modéer T. T- helper-related cytokines in gingival crevicular fluid from adolescents with Down syndrome[J]. Clin Oral Investig, 2012,16(1):267-273.
doi: 10.1007/s00784-010-0495-6 pmid: 21221679
[16] Chen XT, Chen LL, Tan JY, et al. Th17 and Th1 lymphocytes are correlated with chronic periodon-titis[J]. Immunol Invest, 2016,45(3):243-254.
doi: 10.3109/08820139.2016.1138967
[17] Cheng WC, van Asten SD, Burns LA, et al. Perio-dontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14+ mo-nocytes leading to enhanced Th17/IL-17 responses[J]. Eur J Immunol, 2016,46(9):2211-2221.
doi: 10.1002/eji.201545871 pmid: 27334899
[18] Glowczyk I, Wong A, Potempa B, et al. Inactive gingipains from P. gingivalis selectively skews T cells toward a Th17 phenotype in an IL-6 dependent manner[J]. Front Cell Infect Microbiol, 2017,7:140.
doi: 10.3389/fcimb.2017.00140 pmid: 28497028
[19] Lee YK, Landuyt AE, Lobionda S, et al. TCR-in-dependent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL- 1 families[J]. PLoS One, 2017,12(10):e0186351.
doi: 10.1371/journal.pone.0186351 pmid: 29023599
[20] Lexberg MH, Taubner A, Förster A, et al. Th memory for interleukin-17 expression is stable in vivo[J]. Eur J Immunol, 2008,38(10):2654-2664.
pmid: 18825747
[21] Pidala J, Beato F, Kim J, et al. In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation[J]. Haematologica, 2018,103(3):531-539.
doi: 10.3324/haematol.2017.171199 pmid: 29242294
[22] Harrington LE, Hatton RD, Mangan PR, et al. Inter-leukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005,6(11):1123-1132.
doi: 10.1038/ni1254 pmid: 16200070
[23] Mitani A, Niedbala W, Fujimura T, et al. Increased expression of interleukin (IL)-35 and IL-17, but not IL-27, in gingival tissues with chronic periodontitis[J]. J Periodontol, 2015,86(2):301-309.
doi: 10.1902/jop.2014.140293 pmid: 25272982
[24] 田江雪, 莫龙义, 贾小玥, 等. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018,45(5):553-559.
Tian JX, Mo LY, Jia XY, et al. Role of transforming growth factor-β in periodontitis[J]. Int J Stomatol, 2018,45(5):553-559.
[25] Panahi Y, Ghanei M, Hassani S, et al. TGF-β and Th17 cells related injuries in patients with sulfur mustard exposure[J]. J Cell Physiol, 2018,233(4):3037-3047.
doi: 10.1002/jcp.26077 pmid: 28667758
[26] Komai T, Okamura T, Yamamoto K, et al. The effects of TGF-βs on immune responses[J]. Jpn J Clin Im-munol, 2016,39(1):51-58.
[27] Naufel AO, Aguiar MCF, Madeira FM, et al. Treg and Th17 cells in inflammatory periapical disease: a systematic review[J]. Braz Oral Res, 2017,31:e103.
doi: 10.1590/1807-3107bor-2017.vol31.0103 pmid: 29267664
[28] Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000,408(6812):535-536.
pmid: 11117729
[29] 都沙沙, 蔡智国, 杨琨, 等. 牙源性间充质干细胞促进牙周组织再生的可能性与前景[J]. 中国组织工程研究, 2019,23(17):2782-2788.
Du SS, Cai ZG, Yang K, et al. Dental-derived me-senchymal stem cells promote periodontal tissue regeneration: possibility and prospects[J]. Chin J Tissue Eng Res, 2019,23(17):2782-2788.
[30] Chen WC, Huang YK, Han JC, et al. Immunomo-dulatory effects of mesenchymal stromal cells-de-rived exosome[J]. Immunol Res, 2016,64(4):831-840.
doi: 10.1007/s12026-016-8798-6 pmid: 27115513
[31] Baharlou R, Ahmadi-Vasmehjani A, Faraji F, et al. Human adipose tissue-derived mesenchymal stem cells in rheumatoid arthritis: regulatory effects on peripheral blood mononuclear cells activation[J]. Int Immunopharmacol, 2017,47:59-69.
doi: 10.1016/j.intimp.2017.03.016 pmid: 28364628
[32] Cho KA, Park M, Kim YH, et al. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin ac-tivity[J]. Oncotarget, 2017,8(48):83419-83431.
doi: 10.18632/oncotarget.21379 pmid: 29137353
[33] Racz GZ, Kadar K, Foldes A, et al. Immunomodu-latory and potential therapeutic role of mesenchymal stem cells in periodontitis[J]. J Physiol Pharmacol, 2014,65(3):327-339.
pmid: 24930504
[34] Najar M, Fayyad-Kazan H, Faour WH, et al. Im-munological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lym-phocyte co-cultures[J]. Inflamm Res, 2019,68(3):203-213.
pmid: 30506263
[35] 王凯, 李亚光, 周春雷, 等. 不同浓度骨髓间充质干细胞对大鼠Treg/Th17平衡的影响[J]. 中华危重病急救医学, 2019,31(3):288-292.
Wang K, Li YG, Zhou CL, et al. Role of bone marrow mesenchymal stem cells in different concentrations on regulatory T cell/T-helper cell 17 balance in rats[J]. Chin Crit Care Med, 2019,31(3):288-292.
[36] 韩巍, 李鸿波. 体外诱导牙周间充质干细胞炎症反应方法的研究进展[J]. 解放军医学院学报, 2017,38(4):373-375.
Han W, Li HB. Inflammation induction methods for periodontal mesenchymal stem cells in vitro and its progress[J]. Acad J Chin PLA Med Sch, 2017,38(4):373-375.
[37] 李晓光, 王一珠, 郭斌. 慢性牙周炎中肿瘤坏死因子α对骨髓间充质干细胞成骨分化的调控作用[J]. 华西口腔医学杂志, 2017,35(3):334-338.
Li XG, Wang YZ, Guo B. Tumor necrosis factor-α regulates the osteogenic differentiation of bone marrow mesenchymal stem cells in chronic perio-dontitis[J]. West China J Stomatol, 2017,35(3):334-338.
[38] Mao CY, Wang YG, Zhang X, et al. Double-edged-sword effect of IL-1β on the osteogenesis of perio-dontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways[J]. Cell Death Dis, 2016,7(7):e2296.
doi: 10.1038/cddis.2016.204
[39] Mansoori MN, Tyagi AM, Shukla P, et al. Metho-xyisoflavones formononetin and isoformononetin inhibit the differentiation of Th17 cells and B-cell lymphopoesis to promote osteogenesis in estrogen-deficient bone loss conditions[J]. Menopause, 2016,23(5):565-576.
pmid: 27070807
[40] Bai F, Chen XW, Yang H, et al. Acetyl-11-keto-β-boswellic acid promotes osteoblast differentiation by inhibiting tumor necrosis factor-α and nuclear factor-κB activity[J]. J Craniofac Surg, 2018,29(7):1996-2002.
pmid: 29927820
[41] Iguchi M, Hiroi M, Kanegae H, et al. Costimulation of murine osteoblasts with interferon-γ and tumor necrosis factor-α induces apoptosis through downre-gulation of bcl-2 and release of cytochrome c from mitochondria[J]. Mediators Inflamm, 2018,2018:3979606.
pmid: 30158833
[42] Sakai G, Tokuda H, Yamamoto N, et al. Association of HSP22 with mTOR in osteoblasts: regulation of TNF-α-stimulated IL-6 synjournal[J]. FEBS Lett, 2018,592(7):1202-1210.
pmid: 29532456
[43] Kaneshiro S, Ebina K, Shi K, et al. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro[J]. J Bone Miner Metab, 2014,32(4):378-392.
pmid: 24122251
[44] Heftdal LD, Andersen T, Jæhger D, et al. Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis[J]. J Mol Med, 2017,95(7):779-787.
doi: 10.1007/s00109-017-1528-2 pmid: 28365787
[45] 罗强, 顾新华. 慢性牙周炎患者牙龈组织中IL-6、IL-34和M-CSFR的表达及临床意义[J]. 上海口腔医学, 2018,27(6):652-656.
Luo Q, Gu XH. Expression of cytokines Il-6, IL-34 and M-CSFR in chronic periodontitis and its clinical significance[J]. Shanghai J Stomatol, 2018,27(6):652-656.
[46] 张萍, 李帅, 刘志东. 牙周病患者牙周基础治疗前后龈沟液中RANKL和OPG变化[J]. 现代口腔医学杂志, 2015,29(3):149-152.
Zhang P, Li S, Liu ZD. The effect of periodontal basic treatment on the OPG and RANKL in the gingival crevicular fluid of patients with chronic periodontitis[J]. J Mod Stomatol, 2015,29(3):149-152.
[47] Lacombe J, Karsenty G, Ferron M. Regulation of lysosome biogenesis and functions in osteoclasts[J]. Cell Cycle, 2013,12(17):2744-2752.
doi: 10.4161/cc.25825 pmid: 23966172
[48] 王中秀, 杨岚, 谭静怡, 等. 辅助性T细胞1和17细胞特征性分泌因子在大鼠实验性牙周炎模型中的表达及意义[J]. 中华口腔医学杂志, 2017,52(12):740-747.
Wang ZX, Yang L, Tan JY, et al. Effects of T helper 1 cells and T helper 17 cells secreting cytokines on rat models of experimental periodontitis[J]. Chin J Stomatol, 2017,52(12):740-747.
[49] de Aquino SG, Talbot J, Sônego F, et al. The ag-gravation of arthritis by periodontitis is dependent of IL-17 receptor A activation[J]. J Clin Periodontol, 2017,44(9):881-891.
doi: 10.1111/jcpe.12743 pmid: 28498497
[50] Cheng WC, Hughes FJ, Taams LS. The presence, function and regulation of IL-17 and Th17 cells in periodontitis[J]. J Clin Periodontol, 2014,41(6):541-549.
doi: 10.1111/jcpe.12238 pmid: 24735470
[51] Wang HF, He FQ, Xu CJ, et al. Association between the interleukin-1β C-511T polymorphism and perio-dontitis: a meta-analysis in the Chinese population[J]. Genet Mol Res, 2017,16(1). doi: 10.4238/gmr-16019315.
pmid: 28362993
[52] Araújo AA, Morais HB, Medeiros CACX, et al. Gliclazide reduced oxidative stress, inflammation, and bone loss in an experimental periodontal disease model[J]. J Appl Oral Sci, 2019,27:e20180211.
pmid: 30810635
[53] Gelb BD, Shi GP, Chapman HA, et al. Pycnodysos-tosis, a lysosomal disease caused by cathepsin K deficiency[J]. Science, 1996,273(5279):1236-1238.
doi: 10.1126/science.273.5279.1236 pmid: 8703060
[54] Ertugrul AS, Tekin Y, Talmac AC. Comparing the efficiency of Er, Cr: YSGG laser and diode laser on human β-defensin-1 and IL-1β levels during the treatment of generalized aggressive periodontitis and chronic periodontitis[J]. J Cosmet Laser Ther, 2017,19(7):409-417.
pmid: 28557642
[55] Balto K, Sasaki H, Stashenko P. Interleukin-6 de-ficiency increases inflammatory bone destruction[J]. Infect Immun, 2001,69(2):744-750.
pmid: 11159963
[56] Wu Q, Zhou XK, Huang DQ, et al. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro[J]. Cell Physiol Biochem, 2017,41(4):1360-1369.
doi: 10.1159/000465455 pmid: 28278513
[57] Razawy W, van Driel M, Lubberts E. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling[J]. Eur J Immunol, 2018,48(2):220-229.
doi: 10.1002/eji.201646787 pmid: 29148561
[58] Kang YK, Zhang MC. IL-23 promotes osteoclasto-genesis in osteoblast-osteoclast co-culture system[J]. Genet Mol Res, 2014,13(2):4673-4679.
pmid: 25036517
[59] Shukla P, Mansoori MN, Singh D. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions[J]. Bone, 2018,110:84-95.
doi: 10.1016/j.bone.2018.01.027 pmid: 29414600
[60] Shin HS, Sarin R, Dixit N, et al. Crosstalk among IL-23 and DNAX activating protein of 12 kDa-de-pendent pathways promotes osteoclastogenesis[J]. J Immunol, 2015,194(1):316-324.
doi: 10.4049/jimmunol.1401013 pmid: 25452564
[61] Sun XX, Feng XK, Tan WF, et al. Adiponectin ex-acerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression[J]. Sci Rep, 2015,5:11296.
doi: 10.1038/srep11296 pmid: 26063682
[62] Gu H, An HJ, Kim JY, et al. Bee venom attenuates Porphyromonas gingivalis and RANKL-induced bone resorption with osteoclastogenic differentiation[J]. Food Chem Toxicol, 2019,129:344-353.
doi: 10.1016/j.fct.2019.05.001 pmid: 31055000
[63] Li CR, Chung CJ, Hwang CJ, et al. Local injection of RANKL facilitates tooth movement and alveolar bone remodelling[J]. Oral Dis, 2019,25(2):550-560.
doi: 10.1111/odi.13013 pmid: 30536847
[64] Neale Weitzmann M, Pacifici R. Parathyroid diseases and T cells[J]. Curr Osteoporos Rep, 2017,15(3):135-141.
pmid: 28421466
[65] Takahashi S, Fukuda M, Mitani A, et al. Follicular dendritic cell-secreted protein is decreased in ex-perimental periodontitis concurrently with the in-crease of interleukin-17 expression and the Rankl/Opg mRNA ratio[J]. J Periodont Res, 2014,49(3):390-397.
doi: 10.1111/jre.2014.49.issue-3
[66] Svensson MN, Erlandsson MC, Jonsson IM, et al. Impaired signaling through the Fms-like tyrosine kinase 3 receptor increases osteoclast formation and bone damage in arthritis[J]. J Leukoc Biol, 2016,99(3):413-423.
doi: 10.1189/jlb.3HI1114-572RR pmid: 26392589
[67] Cypowyj S, Picard C, Maródi L, et al. Immunity to infection in IL-17-deficient mice and humans[J]. Eur J Immunol, 2012,42(9):2246-2254.
pmid: 22949323
[68] Papadopoulos G, Weinberg EO, Massari P, et al. Macrophage-specific TLR2 signaling mediates pa-thogen-induced TNF-dependent inflammatory oral bone loss[J]. J Immunol, 2013,190(3):1148-1157.
pmid: 23264656
[69] Dutzan N, Kajikawa T, Abusleme L, et al. A dys-biotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans [J]. Sci Transl Med, 2018, 10(463):eaat0797.
doi: 10.1126/scitranslmed.aat0797 pmid: 30333238
[1] 童钰鑫,肖新莉,安莹,张佳喻,石旭妍,王旭,陈悦. 慢性牙周炎对c57小鼠认知能力的影响[J]. 国际口腔医学杂志, 2020, 47(5): 530-537.
[2] 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546.
[3] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[4] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[5] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[6] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[7] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[8] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[9] 王晓宇,朱昭蓉,吴亚菲,赵蕾. 中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 304-310.
[10] 陈斌,徐蓉蓉,张家鼎,闫福华. 重度牙周炎患牙的保存治疗[J]. 国际口腔医学杂志, 2020, 47(2): 125-130.
[11] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[12] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[13] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[14] 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89.
[15] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王涛. 外科优先序列治疗——正颌外科的发展热点之一及其误区[J]. 国际口腔医学杂志, 2020, 47(5): 497 -505 .
[2] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616 -620 .
[3] 薛晶. 邻面成形系统的发展和临床应用[J]. 国际口腔医学杂志, 2020, 47(6): 621 -626 .
[4] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627 -634 .
[5] 陈青青,刘珍巧,王豫蓉. 穴位中频脉冲电刺激对下颌前伸大鼠咬肌改建的生理与生化研究[J]. 国际口腔医学杂志, 2020, 47(6): 635 -643 .
[6] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644 -651 .
[7] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652 -660 .
[8] 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669 -676 .
[9] 张心驰,吴炜. 颌面骨再生领域3D打印技术及应用材料的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 677 -685 .
[10] 吴洁林,高莺. 硬腭获取游离软组织移植物的应用进展[J]. 国际口腔医学杂志, 2020, 47(6): 686 -692 .