国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 212-218.doi: 10.7518/gjkq.2020010

• 综述 • 上一篇    下一篇



  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医学院 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2019-06-27 修回日期:2019-09-27 出版日期:2020-03-01 发布日期:2020-03-12
  • 通讯作者: 赵志河 E-mail:zhaozhihe@vip.163.com
  • 作者简介:田青鹭,学士,Email: 412826595@qq.com

Research progress on stability of mini-implants in orthodontic treatments

Tian Qinglu1,Zhao Zhihe2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-06-27 Revised:2019-09-27 Online:2020-03-01 Published:2020-03-12
  • Contact: Zhihe Zhao E-mail:zhaozhihe@vip.163.com



关键词: 微型种植体, 支抗, 口腔, 稳定性


Anchorage is indispensable for the loading during orthodontic treatments. Temporary anchorage devices (TADs) are widely used for such treatment. The stability of these devices is closely linked to treatment efficiency and quality and can be affected by several factors, such as the patient’s individual condition, the design of TADs, the preparation before implantation, implantation techniques, and the loading after implantation. These factors are reviewed in this study. TAD implanting failures can worsen patients’ suffering and increase the cost, prolong treatment time, and hinder the progress of orthodontic treatment. The success rate of implantation can be improved to a certain degree by controlling the adverse factors influencing TAD stability to achieve a precise and professional-grade orthodontic treatment.

Key words: orthodontic mini-implants, anchorage, oral, stability


  • R783.5
[1] Branemark I, Breine U, Adell R , et al. Intra-osseous anchorage of dental prostheses.Ⅰ. Experimental studies[J]. Plast Reconstr Surg, 1971,48(1):97-98.
[2] Choi SH, Kim SJ, Lee KJ , et al. Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles[J]. Korean J Orthod, 2016,46(4):189-198.
[3] Baumgaertel S, Hans MG . Buccal cortical bone thic-kness for mini-implant placement[J]. Am J Orthod Dentofacial Orthop, 2009,136(2):230-235.
[4] Wang ZQ, Zhao ZH, Xue J , et al. Pullout strength of miniscrews placed in anterior mandibles of adult and adolescent dogs: a microcomputed tomographic ana-lysis[J]. Am J Orthod Dentofacial Orthop, 2010,137(1):100-107.
[5] Chopra SS, Chakranarayan A . Clinical evaluation of immediate loading of titanium orthodontic implants[J]. Med J Armed Forces India, 2015,71(2):165-170.
[6] Farnsworth D, Rossouw PE, Ceen RF , et al. Cortical bone thickness at common miniscrew implant placement sites[J]. Am J Orthod Dentofacial Orthop, 2011,139(4):495-503.
[7] Tozlu M, Germeç Cakan D, Ulkur F , et al. Maxillary buccal cortical plate inclination at mini-screw inser-tion sites[J]. Angle Orthod, 2015,85(5):868-873.
[8] Cassetta M, Sofan AA, Altieri F , et al. Evaluation of alveolar cortical bone thickness and density for or-thodontic mini-implant placement[J]. J Clin Exp Dent, 2013,5(5):e245-e252.
[9] Lim JE, Lee SJ, Kim YJ , et al. Comparison of cortical bone thickness and root proximity at maxillary and mandibular interradicular sites for orthodontic mini-implant placement[J]. Orthod Craniofac Res, 2009,12(4):299-304.
[10] Zhao H, Gu XM, Liu HC , et al. Measurement of cortical bone thickness in adults by cone-beam com-puterized tomography for orthodontic miniscrews placement[J]. J Huazhong Univ Sci Technol (Med Sci), 2013,33(2):303-308.
[11] Alrbata RH, Yu W, Kyung HM . Biomechanical effe-ctiveness of cortical bone thickness on orthodontic microimplant stability: an evaluation based on the load share between cortical and cancellous bone[J]. Am J Orthod Dentofacial Orthop, 2014,146(2):175-182.
[12] Tseng YC, Hsieh CH, Chen CH , et al. The applica-tion of mini-implants for orthodontic anchorage[J]. Int J Oral Maxillofac Surg, 2006,35(8):704-707.
[13] Park HS, Jeong SH, Kwon OW . Factors affecting the clinical success of screw implants used as orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2006,130(1):18-25.
[14] Papadopoulos MA, Papageorgiou SN, Zogakis IP . Clinical effectiveness of orthodontic miniscrew im-plants: a meta-analysis[J]. J Dent Res, 2011,90(8):969-976.
[15] Tepedino M, Masedu F, Chimenti C . Comparative evaluation of insertion torque and mechanical sta-bility for self-tapping and self-drilling orthodontic miniscrews—an in vitro study[J]. Head Face Med, 2017,13(1):10.
[16] Zhang Q, Zhao LX, Wu YK , et al. The effect of var-ying healing times on orthodontic mini-implant sta-bility: a microscopic computerized tomographic and biomechanical analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(4):423-429.
[17] Katić V, Kamenar E, Blažević D , et al. Geometrical design characteristics of orthodontic mini-implants predicting maximum insertion torque[J]. Korean J Orthod, 2014,44(4):177-183.
[18] Meira TM, Tanaka OM, Ronsani MM , et al. Insertion torque, pull-out strength and cortical bone thickness in contact with orthodontic mini-implants at different insertion angles[J]. Eur J Orthod, 2013,35(6):766-771.
[19] Marquezan M, Mattos CT, Sant’Anna EF , et al. Does cortical thickness influence the primary stability of miniscrews? A systematic review and meta-analysis[J]. Angle Orthod, 2014,84(6):1093-1103.
[20] Holm L, Cunningham SJ, Petrie A , et al. An in vitro study of factors affecting the primary stability of orthodontic mini-implants[J]. Angle Orthod, 2012,82(6):1022-1028.
[21] Xu ZR, Wu YK, Zhao LX , et al. Effect of placement Angle on the stability of loaded titanium microscrews in beagle jaws[J]. Angle Orthod, 2013,83(4):659-666.
[22] Zhao LX, Xu ZR, Wei X , et al. Effect of placement Angle on the stability of loaded titanium microscrews: a microcomputed tomographic and biomechanical analysis[J]. Am J Orthod Dentofacial Orthop, 2011,139(5):628-635.
[23] Araghbidikashani M, Golshah A, Nikkerdar N , et al. In-vitro impact of insertion Angle on primary stability of miniscrews[J]. Am J Orthod Dentofacial Orthop, 2016,150(3):436-443.
[24] Romano FL, Consolaro A. Why are mini-implants lost: the value of the implantation technique[J]. Dental Press J Orthod, 2015,20(1):23-29.
[25] Motoyoshi M, Uchida Y, Inaba M , et al. Are assess-ments of damping capacity and placement torque useful in estimating root proximity of orthodontic anchor screws[J]. Am J Orthod Dentofacial Orthop, 2016,150(1):124-129.
[26] Motoyoshi M, Uemura M, Ono A , et al. Factors affe-cting the long-term stability of orthodontic mini-implants[J]. Am J Orthod Dentofacial Orthop, 2010, 137(5):588.e1-588.e5.
[27] Motoyoshi M . Clinical indices for orthodontic mini-implants[J]. J Oral Sci, 2011,53(4):407-412.
[28] 于海璐, 蔡兴伟, 马龙 , 等. 不同植入角度及载荷方向对微种植体稳定性影响的三维有限元分析[J]. 解放军医学院学报, 2016,37(3):261-265, 270.
Yu HL, Cai XW, Ma L , et al. Effect of inserting An-gle and direction of orthodontic force on stability of micro-implants evaluated by 3-dimensional finite element analysis[J]. Acad J Chin PLA Med Sch, 2016,37(3):261-265, 270.
[29] Mohammed H, Wafaie K, Rizk MZ , et al. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a syste-matic review and meta-analysis[J]. Prog Orthod, 2018,19(1):36.
[30] 孙吉成, 胡赟, 郑雷蕾 , 等. 拔牙创愈合对邻近微种植体骨界面生长因子影响的研究[J]. 四川大学学报(医学版), 2015,46(2):222-227.
Sun JC, Hu Y, Zheng LL , et al. Influence of healing process of extraction on related growth factors in microscrew-bone interface of implanted titanium microscrews near the extraction wounds[J]. J Sichuan Univ (Med Sci Ed), 2015,46(2):222-227.
[31] Son S, Motoyoshi M, Uchida Y , et al. Comparative study of the primary stability of self-drilling and self-tapping orthodontic miniscrews[J]. Am J Orthod Dentofacial Orthop, 2014,145(4):480-485.
[32] Sharifi M, Ghassemi A, Bayani S . Effect of insertion method and postinsertion time interval prior to force application on the removal torque of orthodontic miniscrews[J]. Int J Oral Maxillofac Implants, 2015,30(1):35-40.
[33] Duaibis R, Kusnoto B, Natarajan R , et al. Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study[J]. Angle Orthod, 2012,82(5):875-880.
[34] 常少海, 常岚如, 张健娜 , 等. 转矩力作用下不同颈部构型对微种植体稳定性的影响[J]. 中山大学学报(医学科学版), 2016,37(2):248-253.
Chang SH, Chang LR, Zhang JN , et al. Influence of neck design on mini-implant primary stability after loading with torque force[J]. J Sun Yat-sen Univ (Med Sci), 2016,37(2):248-253.
[35] Scribante A, Montasser MA, Radwan ES , et al. Reliability of orthodontic miniscrews: bending and maximum load of different Ti-6Al-4V titanium and stainless steel temporary anchorage devices (TADs)[J]. Materials (Basel), 2018,11(7). doi: 10.3390/ma11071138.
[36] Radwan ES, Montasser MA, Maher A . Influence of geometric design characteristics on primary stability of orthodontic miniscrews[J]. J Orofac Orthop, 2018,79(3):191-203.
[37] Motoyoshi M, Yano S, Tsuruoka T , et al. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis[J]. Clin Oral Im-plants Res, 2005,16(4):480-485.
[38] Miyawaki S, Tomonari H, Yagi T , et al. Development of a novel spike-like auxiliary skeletal anchorage de- vice to enhance miniscrew stability[J]. Am J Orthod Dentofacial Orthop, 2015,148(2):338-344.
[39] 张强, 李平, 刘静 . 种植体周围炎危险因素及其预防研究进展[J]. 全科口腔医学电子杂志, 2018,5(14):19-21.
Zhang Q, Li P, Liu J . Research progress on risk fac-tors and prevention of peri-implant inflammation[J]. Gen J Stomatol, 2018,5(14):19-21.
[40] Oh HJ, Cha JY, Yu HS , et al. Histomorphometric evaluation of the bone surrounding orthodontic miniscrews according to their adjacent root pro-ximity[J]. Korean J Orthod, 2018,48(5):283-291.
[41] Suzuki M, Deguchi T, Watanabe H , et al. Evaluation of optimal length and insertion torque for miniscrews[J]. Am J Orthod Dentofacial Orthop, 2013,144(2):251-259.
[42] Albogha MH, Takahashi I . Effect of loaded orthodontic miniscrew implant on compressive stresses in adja-cent periodontal ligament[J]. Angle Orthod, 2019,89(2):235-241.
[43] Cho UH, Yu W, Kyung HM . Root contact during drilling for microimplant placement. Affect of sur-gery site and operator expertise[J]. Angle Orthod, 2010,80(1):130-136.
[44] Shigeeda T . Root proximity and stability of orthodontic anchor screws[J]. J Oral Sci, 2014,56(1):59-65.
[45] Inaba M . Evaluation of primary stability of inclined orthodontic mini-implants[J]. J Oral Sci, 2009,51(3):347-353.
[46] Shan LH, Guo N, Zhou GJ , et al. Finite element ana-lysis of bone stress for miniscrew implant proximal to root under occlusal force and implant loading[J]. J Craniofac Surg, 2015,26(7):2072-2076.
[47] Jeong JW, Kim JW, Lee NK , et al. Analysis of time to failure of orthodontic mini-implants after insertion or loading[J]. J Korean Assoc Oral Maxillofac Surg, 2015,41(5):240-245.
[48] Zhang LK, Zhao ZH, Li Y , et al. Osseointegration of orthodontic micro-screws after immediate and early loading[J]. Angle Orthod, 2010,80(2):354-360.
[49] 常立军, 唐甜, 张晓歌 , 等. 正畸应力刺激下Beagle犬微种植体周围炎的牙周组织变化[J]. 中国组织工程研究, 2018,22(34):5464-5468.
Chang LJ, Tang T, Zhang XG , et al. Periodontal tissue changes in a Beagle dog model of peri-implantitis under orthodontic force[J]. Chin J Tissue Eng Res, 2018,22(34):5464-5468.
[50] 王雨薇, 王了, 包崇云 . 种植体颈部的优化设计在预防种植体周围炎中的应用[J]. 口腔医学, 2018,38(2):177-180.
Wang YW, Wang L, Bao CY . Effect of cervical design of dental implant on peri-implantitis[J]. Stomatology, 2018,38(2):177-180.
[1] 孔利心,任彪,程磊. 环氧合酶2/前列腺素E2通路调控口腔肿瘤机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 431-438.
[2] 于林彤,宋光泰. 铒激光在儿童口腔医学中的应用[J]. 国际口腔医学杂志, 2020, 47(3): 351-355.
[3] 易俭如,罗梦奇,尹一佳,刘治清,柳茜,石永乐,杨征,刘帆,韩向龙. 新型冠状病毒肺炎流行期降低口腔诊疗中气溶胶传播风险的策略[J]. 国际口腔医学杂志, 2020, 47(3): 362-365.
[4] 郝福,宁毅,孙睿,郑晓旭. 口腔鳞状细胞癌中转化因子2β的表达及潜在的临床意义[J]. 国际口腔医学杂志, 2020, 47(2): 159-165.
[5] 薛伶俐,李雅冬. 经首次根治性手术治疗口腔鳞状细胞癌患者的生存相关影响因素分析[J]. 国际口腔医学杂志, 2020, 47(2): 166-174.
[6] 魏中武,黄谢山,陈灼庚. 浓缩生长因子在口腔临床中的应用及研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 235-243.
[7] 毕小琴,熊茂婧,陈丽先,白沅艳,田莉,杨晖. 新型冠状病毒肺炎疫情下口腔颌面外科的护理防控[J]. 国际口腔医学杂志, 2020, 47(2): 244-248.
[8] 张明爽,巴特,王文标. 口腔微生物种群与阿尔茨海默病相关发病机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 102-108.
[9] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[10] 董云梅,陶艳,周瑜. 口腔黏膜癌变过程中血清生化标志物的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 43-50.
[11] 陈煜鑫,周瑜,陈谦明. 口腔苔藓样病变的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 51-57.
[12] 沈晨露,叶伟佳,吕柯佳,高碧聪,姚华. 口腔扁平苔藓实验模型建立的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 58-62.
[13] 黄璐,戴杰,吴燕岷. 唾液生物标志物在口腔癌筛查中的应用[J]. 国际口腔医学杂志, 2020, 47(1): 68-75.
[14] 陈宏丽,杨敬,尹刚,李皓缘,乔燕. 锌指蛋白32在口腔鳞状细胞癌中的表达意义及对口腔鳞状细胞癌干细胞的影响[J]. 国际口腔医学杂志, 2019, 46(6): 631-639.
[15] 胡静,戴艳梅,冯昭飞. 基于氟牙症流行特征的天津市12~14岁青少年口腔健康抽样调查分析[J]. 国际口腔医学杂志, 2019, 46(6): 650-656.
Full text



[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[6] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[7] 李凤波,俞立英. 种植义齿的软组织处理与美学效果[J]. 国际口腔医学杂志, 2008, 35(S1): .
[8] 叶年嵩 王晟综述 赖文莉审校. 非综合征性先天缺牙相关基因的研究进展[J]. 国际口腔医学杂志, 2011, 38(4): 416 -418 .
[9] 史久成,陈桂玲. 吸烟伴早发性牙周炎患者的临床及微生物学改变[J]. 国际口腔医学杂志, 2000, 27(02): .
[10] 周晗 张陶 岳源 乔梦婷 李燕 肖丽英. 葡萄多酚和茶多酚抗变异链球菌活性的比较[J]. 国际口腔医学杂志, 2011, 38(6): 643 -648 .