国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (1): 84-89.doi: 10.7518/gjkq.2020005

• 综述 • 上一篇    下一篇

哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控

朱俊瑾1,周佳琦1,伍颖颖2,()   

  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2019-05-12 修回日期:2019-10-09 出版日期:2020-01-01 发布日期:2020-01-01
  • 通讯作者: 伍颖颖 E-mail:yywdentist@163.com
  • 作者简介:朱俊瑾,学士,Email: 512391940@qq.com
  • 基金资助:
    四川省科学技术厅科技创新苗子工程(2018RZ0088)

Function of autophagy induced by mammalian target of rapamycin complex 1 in bone metabolism

Zhu Junjin1,Zhou Jiaqi1,Wu Yingying2,()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-05-12 Revised:2019-10-09 Online:2020-01-01 Published:2020-01-01
  • Contact: Yingying Wu E-mail:yywdentist@163.com
  • Supported by:
    This study was supported by Sichuan Science and Technology Innovation Seedling Project(2018RZ0088)

摘要:

哺乳动物雷帕霉素靶蛋白复合物(mTORC)1是哺乳动物雷帕霉素靶蛋白形成的一种复合物,在细胞合成代谢过程中起重要作用,其参与调控的自噬作用近年来受到广泛关注。自噬是细胞降解损坏的蛋白质或细胞器并将其循环利用的过程。随着对mTORC1/自噬效应的研究逐渐深入,其在骨代谢方面的调控作用愈发凸显。本文就mTORC1介导的自噬通路在成骨细胞、破骨细胞等骨相关细胞方面的作用及其机制进行综述,为骨代谢的生物学机制和骨组织疾病的研究提供新思路。

关键词: 哺乳动物雷帕霉素靶蛋白复合物, 自噬, 成骨细胞, 破骨细胞

Abstract:

The mammalian target of rapamycin (mTOR) forms two functionally distinct multiprotein complexes, one of which is the mammalian target of rapamycin complex 1 (mTORC1). The mTORC1 plays a central role in regulating anabolic processes, including autophagy, which has recently captured extensive attention. Autophagy is an intracellular recycling pathway in which cellular components, including protein aggregates and organelles, are targeted to the lysosome for degradation. In recent years, an increasing amount of evidence shows that autophagy is mediated by mTORC1, which plays a critical role in bone metabolism. This review summarises the important role and mechanism of mTORC1-mediated autophagy in bone-related cells, especially osteoblasts and osteoclasts.

Key words: mammalian target of rapamycin complex, autophagy, osteoblast, osteoclast

中图分类号: 

  • Q251
[1] Potter CJ, Pedraza LG, Xu T . Akt regulates growth by directly phosphorylating Tsc2[J]. Nat Cell Biol, 2002,4(9):658-665.
[2] Ma L, Chen Z, Erdjument-Bromage H , et al. Pho-sphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis[J]. Cell, 2005,121(2):179-193.
[3] Laplante M , Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012,149(2):274-293.
[4] Martina JA, Chen Y, Gucek M , et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB[J]. Auto-phagy, 2012,8(6):903-914.
[5] Hua Y, Shen M ,McDonald C,et al.Autophagy dys-function in autoinflammatory diseases[J]. J Autoimmun, 2018,88:11-20.
[6] Rockel JS, Kapoor M . Autophagy: controlling cell fate in rheumatic diseases[J]. Nat Rev Rheumatol, 2016,12(9):517-531.
[7] Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curr Opin Cell Biol, 2010,22(2):124-131.
[8] Jung CH, Jun CB, Ro SH , et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the auto-phagy machinery[J]. Mol Biol Cell, 2009,20(7):1992-2003.
[9] Duran A, Amanchy R, Linares JF , et al. p62 is a key regulator of nutrient sensing in the mTORC1 path-way[J]. Mol Cell, 2011,44(1):134-146.
[10] Liu YQ, Hong ZL, Zhan LB , et al. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β- atenin signaling pathway but suppresses osteoclasto-genesis by NF-κB/c-fos/NFATc1 pathway[J]. Sci Rep, 2016,6:32260.
[11] Chen Q, Shou P, Zheng C , et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts[J]. Cell Death Differ, 2016,23(7):1128-1139.
[12] Greco EA, Lenzi A, Migliaccio S . The obesity of bone[J]. Ther Adv Endocrinol Metab, 2015,6(6):273-286.
[13] Chen C, Akiyama K, Wang D , et al. mTOR inhibitiontion rescues osteopenia in mice with systemic sclerosis[J]. J Exp Med, 2015,212(1):73-91.
[14] Qi M, Zhang L, Ma Y , et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteo-porosis[J]. Theranostics, 2017,7(18):4498-4516.
[15] Yin ZY, Yin J, Huo YF , et al. Rapamycin facilitates fracture healing through inducing cell autophagy and suppressing cell apoptosis in bone tissues[J]. Eur Rev Med Pharmacol Sci, 2017,21(21):4989-4998.
[16] Zhou Z, Shi G, Zheng X , et al. Autophagy activation facilitates mechanical stimulation-promoted osteo-blast differentiation and ameliorates hindlimb un-loading-induced bone loss[J]. Biochem Biophys Res Commun, 2018,498(3):667-673.
[17] Piemontese M, Onal M, Xiong J , et al. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage[J]. Sci Rep, 2016,6:24262.
[18] Liu F, Fang F, Yuan H , et al. Suppression of auto-phagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation[J]. J Bone Miner Res, 2013,28(11):2414-2430.
[19] Pantovic A, Krstic A, Janjetovic K , et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic dif-ferentiation of human mesenchymal stem cells[J]. Bone, 2013,52(1):524-531.
[20] Liu Y, Kou X, Chen C , et al. Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells[J]. Stem Cells, 2016,34(8):2157-2168.
[21] Nollet M, Santucci-Darmanin S, Breuil V , et al. Autophagy in osteoblasts is involved in mineraliza-tion and bone homeostasis[J]. Autophagy, 2014,10(11):1965-1977.
[22] 余守和, 洪岸 . Runx2通过抑制细胞巨自噬以诱导C2C12细胞向成骨细胞分化[J]. 中国病理生理杂志, 2013,29(3):481-487.
Yu SH, Hong A . Runx2 promotes osteogenic diffe-rentiating C2C12 cells through inhibiting macroauto-phagy[J]. Chin J Pathophysiol, 2013,29(3):481-487.
[23] Fitter S, Matthews MP, Martin SK , et al. mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation[J]. Mol Cell Biol, 2017,37(7). doi: 10.1128/MCB.00668-16.
[24] Thoreen CC, Chantranupong L, Keys HR , et al. A unifying model for mTORC1-mediated regulation of mRNA translation[J]. Nature, 2012,485(7396):109-113.
[25] Sambandam Y, Townsend MT, Pierce JJ , et al. Mi-cro-gravity control of autophagy modulates osteo-clastogenesis[J]. Bone, 2014,61:125-131.
[26] Cai ZY, Yang B, Shi YX , et al. High glucose downre-gulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway[J]. Biochem Biophys Res Commun, 2018,503(2):428-435.
[27] Xiu Y, Xu H, Zhao C , et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by pre-venting TRAF3 degradation[J]. J Clin Invest, 2014,124(1):297-310.
[28] Xu S, Zhang Y, Liu B , et al. Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG[J]. J Bone Miner Res, 2016,31(7):1320-1333.
[29] Tong X, Gu J, Song R , et al. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro[J]. J Cell Biochem, 2018.doi: 10.1002/jcb.27468.
[30] Dai Q, Xie F, Han Y , et al. Inactivation of regulatory-associated protein of mTOR (raptor)/mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice[J]. J Biol Chem, 2017,292(1):196-204.
[31] Galson DL, Roodman GD . Pathobiology of Paget’s disease of bone[J]. J Bone Metab, 2014,21(2):85-98.
[32] McManus S, Bisson M, Chamberland R , et al. Auto-phagy and 3-phosphoinositide-dependent kinase 1 (PDK1)-related kinome in pagetic osteoclasts[J]. J Bone Miner Res, 2016,31(7):1334-1343.
[33] Plotkin LI, Speacht TL, Donahue HJ . Cx43 and me-chanotransduction in bone[J]. Curr Osteoporos Rep, 2015,13(2):67-72.
[34] Gao J, Cheng TS, Qin A , et al. Glucocorticoid impairs cell-cell communication by autophagy-me-diated degradation of connexin 43 in osteocytes[J]. Oncotarget, 2016,7(19):26966-26978.
[35] Onal M, Piemontese M, Xiong J , et al. Suppression of autophagy in osteocytes mimics skeletal aging[J]. J Biol Chem, 2013,288(24):17432-17440.
[36] Luo D, Ren H, Li T , et al. Rapamycin reduces severity of senile osteoporosis by activating osteocyte auto-phagy[J]. Osteoporos Int, 2016,27(3):1093-1101.
[1] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[2] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
[3] 张誉泓,戚孟春,董伟,孙红. CaMKi>Ⅱδ基因沉默对破骨细胞分化功能及c-fosi>/c-juni>/CREBi>基因的影响[J]. 国际口腔医学杂志, 2019, 46(4): 420-425.
[4] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[5] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[6] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J]. 国际口腔医学杂志, 2017, 44(6): 664-668.
[7] 崔跃, 姜欢, 胡敏. 破骨细胞蛋白酪氨酸磷酸酶与正畸移动牙牙根吸收的关系[J]. 国际口腔医学杂志, 2017, 44(1): 87-91.
[8] 耿远明1,申晓青1,徐平平2. 生物力刺激和促丝裂原激活蛋白激酶对骨改建的影响[J]. 国际口腔医学杂志, 2016, 43(6): 700-705.
[9] 张嘉熙1,何美丽1,赵冰松1,李临梅2. 促红细胞生成素在成骨细胞分化中的实验研究[J]. 国际口腔医学杂志, 2016, 43(6): 636-639.
[10] 陈冠辉 侯劲松. 低氧和自噬与肿瘤的发生发展[J]. 国际口腔医学杂志, 2016, 43(5): 584-588.
[11] 侯玉帛1 刘歆婵2 于海燕1 崔磊华3 于维先4. 牙龈蛋白及其对破骨和成骨细胞功能的影响[J]. 国际口腔医学杂志, 2016, 43(5): 609-613.
[12] 任静宜1 刘歆婵1 丁烨1 于洪强1 周延民1 于维先2. 细胞自噬和炎症反应的相互调控与牙周炎[J]. 国际口腔医学杂志, 2016, 43(4): 462-467.
[13] 周正 赵长铭 焦凯 王美青. 交感神经系统-肾上腺素能受体对骨改建的调节作用[J]. 国际口腔医学杂志, 2015, 42(3): 348-351.
[14] 孟庆阳,郑嵘,朱阳,王丹丹,吴立鹏,孙宏晨. 破骨细胞分化因子及其信号转导通路[J]. 国际口腔医学杂志, 2015, 42(2): 189-193.
[15] 张嘉熙 邓红燕 纪茗权 赵冰松 刘大军. 红细胞生成素及其受体对成骨细胞的作用机制[J]. 国际口腔医学杂志, 2015, 42(1): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[5] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[6] 沈末伦,华成舸. 上皮间质转化及其调控基因Twist在肿瘤侵袭转移中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): .
[7] 薛莉,王少安. 骨替代材料在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[8] 骆琳,王航. 口腔环境对牙科树脂复合材料摩擦学的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[9] 赵熠1 蔡育2综述 王贻宁1审校. 破骨细胞前体细胞的研究进展[J]. 国际口腔医学杂志, 2011, 38(6): 670 -673 .
[10] 丁浩. T1~T3N0舌癌是否需要清扫Ⅳ区[J]. 国际口腔医学杂志, 2002, 29(02): .