国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 673-677.doi: 10.7518/gjkq.2018.06.009

• 材料学专栏 • 上一篇    下一篇

石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展

李婷婷,张玉峰(),王若茜,黄智庆,谢律,薛艺凡,王宇蓝   

  1. 口腔基础医学省部共建国家重点实验室培育基地和口腔生物医学教育部重点实验室 武汉大学口腔医学院 武汉 430079
  • 收稿日期:2017-11-02 修回日期:2018-05-23 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 张玉峰 E-mail:zyf@whu.edu.cn
  • 作者简介:李婷婷,学士,Email: 2064448467@qq.com
  • 基金资助:
    武汉大学自主科研交叉项目(2042017kf0207);湖北省技术创新专项重点项目(2017AHB046)

Mechanism and application of osteogenesis induced by graphene and its derivatives modified composite materials

Tingting Li,Yufeng Zhang(),Ruoxi Wang,Zhiqing Huang,Lü Xie,Yifan Xue,Yulan Wang   

  1. State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatolgy, Wuhan University, Wuhan 430079, China
  • Received:2017-11-02 Revised:2018-05-23 Online:2018-11-01 Published:2018-11-15
  • Contact: Yufeng Zhang E-mail:zyf@whu.edu.cn
  • Supported by:
    This study was supported by Fundamental Research Funds for the Central Universities(2042017kf0207);The Special Fund for Technical Innovation of Hubei Province(2017AHB046)

摘要:

自体或异体骨移植是治疗骨缺损的有效方法,但仍存在感染、免疫排斥等问题。骨组织工程一直致力于通过不同材料诱导干细胞向成骨方向分化,以修复各种因素造成的骨缺损。将石墨烯及其衍生物负载在支架材料上能显著增强现有支架材料的生物相容性,并促进干细胞的黏附、增殖及成骨分化。本文对近年来石墨烯及其衍生物改性复合材料在成骨分化方面应用的研究进展进行综述,为石墨烯在骨组织工程中的应用提供新思路。

关键词: 石墨烯, 石墨烯衍生物, 成骨分化, 骨再生

Abstract:

For a long time, autogenous bone graft is widely used in clinic and was verified to be effective in treating bone defects, but this technique is not perfect for the difficulty in healing of the donate site, immune rejection and infection. Bone tissue engineering approaches aims to aid the regeneration of bone tissues by filling the bone defects with different scaffolds which is able to induce the osteogenic differentiation of bone marrow stem cells. It is reported in former researches that graphene coating can significantly enhance the biocompatibility, cell adhesion and differentiation of scaffolds. In this review, we focused on the application of scaffolds modified with graphene and its derivatives to promote osteogenic differentiation published in recent years to providing new ideas for bone tissue regeneration.

Key words: graphene, grapheme derivatives, osteogenic differentiation, osteogenesis

中图分类号: 

  • R687.3 +4
[1] Novoselov KS, Geim AK, Morozov SV , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896
[2] Lee CG, Wei XD, Kysar JW , et al. Measurement of the elastic properties and intrinsic strength of mono-layer graphene[J]. Science, 2008,321(5887):385-388.
doi: 10.1126/science.1157996 pmid: 18635798
[3] Balandin AA, Ghosh S, Bao WZ , et al. Superior the- rmal conductivity of single-layer graphene[J]. Nano Lett, 2008,8(3):902-907.
doi: 10.1021/nl0731872 pmid: 18284217
[4] Jastrzębska AM, Kurtycz P, Olszyna AR . Recent advances in graphene family materials toxicity inves-tigations[J]. J Nanopart Res, 2012,14(12):1320.
doi: 10.1007/s11051-012-1320-8 pmid: 23239936
[5] Schinwald A, Murphy F, Askounis A , et al. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung[J]. Nanotoxicology, 2014,8(8):824-832.
doi: 10.3109/17435390.2013.831502 pmid: 23924429
[6] Pan LL, Pei XB, He R , et al. Multiwall carbon nano-tubes/polycaprolactone composites for bone tissue engineering application[J]. Colloids Surf B Bioin-terfaces, 2012,93:226-234.
doi: 10.1016/j.colsurfb.2012.01.011 pmid: 22305638
[7] La WG, Park S, Yoon HH , et al. Delivery of a thera-peutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013,9(23):4051-4060.
doi: 10.1002/smll.201300571 pmid: 23839958
[8] Jung HS, Lee T, Kwon IK , et al. Surface modifica-tion of multipass caliber-rolled Ti alloy with dexa-methasone-loaded graphene for dental applications[J]. ACS Appl Mater Interfaces, 2015,7(18):9598-9607.
doi: 10.1021/acsami.5b03431 pmid: 25909563
[9] 魏丽君, 曹均凯, 李俊杰 , 等. 低聚乙二醇富马酸酯/氧化石墨烯复合水凝胶对大鼠骨髓间充质干细胞成骨分化的调控作用[J]. 解放军医学院学报, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
Wei LJ, Cao JK, Li JJ , et al. Effects of oligo [poly (ethylene glycol) fumarate]/graphene oxide on osteo-genic differentiation of bone marrow mesenchymal stem cells in rats[J]. Acad J Chin PLA Med School, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
[10] 齐元园 . 石墨烯聚合物复合材料在组织工程支架及药物载体中的应[D]. 兰州: 兰州大学, 2012.
Qi YY . Applications of graphene/polymer composites in tissue engineering scaffold and drug carrier[D]. Lanzhou: Lanzhou University, 2012.
[11] Wang CH, Guo ZS, Pang F , et al. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments[J]. ACS Appl Mater Interfaces, 2015,7(28):15263-15276.
doi: 10.1021/acsami.5b02893 pmid: 26111253
[12] Duan S, Yang XP, Mei F , et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. J Biomed Mater Res A, 2015,103(4):1424-1435.
doi: 10.1002/jbm.a.35283 pmid: 25046153
[13] Ramezanzadeh B, Ghasemi E, Mahdavian M , et al. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings[J]. Carbon, 2015,93:555-573.
doi: 10.1016/j.carbon.2015.05.094
[14] 韩笑, 董玉华, 周琼 . 氧化石墨烯/聚偏氟乙烯复合涂层的机械性能与防腐性研究[J]. 涂料工业, 2016,46(5):1-6.
Han X, Dong YH, Zhou Q . Investigation of mechanical and anticorrosion properties of graphene oxide/poly-vinylidene fluoride composite coating[J]. Paint Coat Ind, 2016,46(5):1-6.
[15] Yoon HH, Bhang SH, Kim T , et al. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier[J]. Adv Funct Mater, 2014,24(41):6455-6464.
doi: 10.1002/adfm.201400793
[16] Gu M, Liu YS, Chen T , et al. Is graphene a promising nanomaterial for promoting surface modi-fication of implants or scaffold materials in bone tissue engine-ering[J]. Tissue Eng Part B, 2014,20(5):477-491.
doi: 10.1089/ten.TEB.2013.0638 pmid: 4186769
[17] Sniadecki NJ, Desai RA, Ruiz SA , et al. Nanotechno-logy for cell-substrate interactions[J]. Ann Biomed Eng, 2006,34(1):59-74.
doi: 10.1007/s10439-005-9006-3 pmid: 16525764
[18] Kumar S, Raj S, Sarkar K , et al. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration[J]. Nanoscale, 2016,8(12):6820-6836.
doi: 10.1039/c5nr06906h pmid: 26955801
[19] Nayak TR, Andersen H, Makam VS , et al. Graphene for controlled and accelerated osteogenic differentia-tion of human mesenchymal stem cells[J]. ACS Nano, 2011,5(6):4670-4678.
doi: 10.1021/nn200500h
[20] Depan D, Misra RD . The interplay between nanos-tructured carbon-grafted chitosan scaffolds and pro-tein adsorption on the cellular response of osteob-lasts: structure-function property relationship[J]. Acta Biomater, 2013,9(4):6084-6094.
doi: 10.1016/j.actbio.2012.12.019 pmid: 23261921
[21] Jia ZJ, Shi YY, Xiong P , et al. From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation[J]. ACS Appl Mater Interfaces, 2016,8(27):17151-17165.
doi: 10.1021/acsami.6b05198 pmid: 27327408
[22] Lee WC, Lim CH, Shi H , et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011,5(9):7334-7341.
doi: 10.1021/nn202190c pmid: 21793541
[23] 吕成奇, 陆家瑜, 于佳 , 等. 自撑式石墨烯水凝胶诱导人脂肪干细胞成骨分化的体外研究[J]. 口腔医学, 2014,34(7):486-491.
Lü CQ, Lu JY, Yu J , et al. In vitro effects of self-sustaining graphene hydrogel film on the osteogenic differentiation of human adipose-derived stem cells[J]. Stomatology, 2014,34(7):486-491.
[24] Lee JH, Shin YC, Jin OS , et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2015,7(27):11642-11651.
doi: 10.1039/c5nr01580d pmid: 26098486
[25] Usui Y, Aoki K, Narita N , et al. Carbon nanotubes with high bone-tissue compatibility and bone-forma-tion acceleration effects[J]. Small, 2008,4(2):240-246.
doi: 10.1002/smll.200700670 pmid: 18205152
[26] Mahamid JL, Aichmayer B, Shimoni E , et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebra-fish fin rays[J]. Proc Natl Acad Sci USA, 2010,107(14):6316-6321.
doi: 10.1073/pnas.0914218107 pmid: 20308589
[27] Goriainov V, Cook R, Latham JM , et al. Bone and metal: an orthopaedic perspective on osseointegration of metals[J]. Acta Biomater, 2014,10(10):4043-4057.
doi: 10.1016/j.actbio.2014.06.004 pmid: 24932769
[28] 初可嘉, 刘建国, 吴迪 , 等. 成熟期成釉细胞功能的研究进展[J]. 口腔医学研究, 2013,29(8):783-785.
Chu KJ, Liu JG, Wu D , et al. Research progress on ameloblastoma function at mature stage[J]. J Oral Sci Res, 2013,29(8):783-785.
[29] Zhang YB, Petibone D, Xu Y , et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine[J]. Drug Metab Rev, 2014,46(2):232-246.
doi: 10.3109/03602532.2014.883406 pmid: 24506522
[30] Chang YL, Yang ST, Liu JH , et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicol Lett, 2011,200(3):201-210.
doi: 10.1016/j.toxlet.2010.11.016 pmid: 21130147
[31] Lu CH, Zhu CL, Li J , et al. Using graphene to protect DNA from cleavage during cellular delivery[J]. Chem Commun (Camb), 2010,46(18):3116-3118.
doi: 10.1039/b926893f pmid: 20424750
[32] 沈贺, 张立明, 张智军 . 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
Shen H, Zhang LM, Zhang ZJ . The application of graphene in the field of biomedicine[J]. J Southeast Univ (Med Sci Ed), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
[33] Ruiz ON, Fernando KA, Wang BJ , et al. Graphene oxide: a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011,5(10):8100-8107.
doi: 10.1021/nn202699t pmid: 21932790
[34] Zhang S, Yang K, Feng LZ , et al. In vitro and In vitro behaviors of dextran functionalized graphene[J]. Carbon, 2011,49(12):4040-4049.
doi: 10.1016/j.carbon.2011.05.056
[1] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[2] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[3] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[4] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[5] 邓雪阳,潘兰兰,胡婷,李文华,向学熔. 钛合金表面氧化石墨烯涂层的制备[J]. 国际口腔医学杂志, 2018, 45(5): 539-545.
[6] 朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448.
[7] 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49.
[8] 王婷, 葛少华. 氧化石墨烯在生物医学领域方面应用的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 591-595.
[9] 刘双, 李纾. 表观遗传学及其调控与牙周病[J]. 国际口腔医学杂志, 2017, 44(5): 523-527.
[10] 安宁, 唐正龙. 甲状旁腺激素调控牙周组织改建的研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 466-470.
[11] 伍彩娟, 杨岚, 郭吕华. 降钙素基因相关肽在骨组织再生中的作用及机制[J]. 国际口腔医学杂志, 2017, 44(4): 488-492.
[12] 朱宸佑,曹钰彬,邓佳,亓文婷,曹聪,石冰. 胶原-生长因子生物材料及其在骨和神经再生中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 729-733.
[13] 朱宸佑,邓佳,曹钰彬,刘孟轲,杨醒眉. 生物膜在位点保护中的应用[J]. 国际口腔医学杂志, 2016, 43(2): 187-189.
[14] 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-.
[15] 刘佳,谢志刚,鲍济波. 骨移植材料有效骨再生的评价方法及应[J]. 国际口腔医学杂志, 2015, 42(2): 173-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .