国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (6): 664-668.doi: 10.7518/gjkq.2017.06.008

• 牙周专栏 • 上一篇    下一篇

炎性衰老在糖尿病牙周炎中的作用机制及研究现状

张鹏1, 丁一2, 王琪1   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心,四川大学华西口腔医院修复科 成都 610041;
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心,四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2017-04-10 修回日期:2017-08-15 出版日期:2017-11-01 发布日期:2017-11-01
  • 通讯作者: 王琪,副教授,博士,Email:wqinno8751@gmail.com
  • 作者简介:张鹏,硕士,Email:pengno1@qq.com
  • 基金资助:
    国家自然科学基金(81200794); 成都市国际科技合作项目(2015-GH02-00035-HZ)

Research on the role of inflammaging in diabetes mellitus-associated periodontitis

Zhang Peng1, Ding Yi2, Wang Qi1   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-04-10 Revised:2017-08-15 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81200794) and International Cooperation Project of Chengdu Municipal Science and Technology Bureau(2015-GH02-00035-HZ).

摘要: 糖尿病牙周炎近来被认为是一种衰老相关疾病,其预防和控制是临床治疗的难点。炎性衰老目前被发现是糖尿病并发症发生和发展的重要因素。本文就炎性衰老及其在糖尿病牙周炎中潜在作用机制进行综述,为研究糖尿病患者牙周炎发生发展的机制和治疗方法提供新的思路。

关键词: 糖尿病牙周炎, 炎性衰老, 氧化应激, 炎性细胞因子, DNA损伤, 自噬

Abstract: Diabetes mellitus-associated periodontitis is a common age-related disease. However, methods for the prevention and treatment of this disease need further development. Inflammaging has been recently raised as an important factor in the occurrence and development of diabetic complications. This paper reviewed the relevant literature about the research and mechanism on the role of inflammaging in diabetes mellitus-associated periodontitis and provided the new approach for pathogenesis and treatment of periodontitis inpatients with diabetes.

Key words: diabetes mellitus-associated periodontitis, inflammaging, oxidative stress, inflammatory cytokines, DNA damage, autophagy

中图分类号: 

  • R781.4
[1] Teeuw WJ, Kosho MX, Poland DC, et al. Periodon-titis as a possible early sign of diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2017, 5(1):e000326.
[2] Chapple IL, Genco R. Diabetes and periodontal diseases: consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases[J]. J Clin Periodontol, 2013, 40(Suppl 14):S106-S112.
[3] Prattichizzo F, De Nigris V, La Sala L, et al. “In-flammaging” as a druggable target: a senescence-associated secretory phenotype-centered view of type 2 diabetes[J]. Oxid Med Cell Longev, 2016, 2016:1810327.
[4] Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immuno-senescence[J]. Ann N Y Acad Sci, 2000, 908:244- 254.
[5] 夏世金, 孙涛, 郑松柏, 等. 炎性衰老的研究[J]. 成都医学院学报, 2012, 7(3):336-343.
Xia SJ, Sun T, Zheng SB, et al. Research of inflam-maging[J]. J Chengdu Med Col, 2012, 7(3):336-343.
[6] Childs BG, Durik M, Baker DJ, et al. Cellular sene-scence in aging and age-related disease: from me-chanisms to therapy[J]. Nat Med, 2015, 21(12):1424- 1435.
[7] Johnson SC, Dong X, Vijg J, et al. Genetic evidence for common pathways in human age-related diseases [J]. Aging Cell, 2015, 14(5):809-817.
[8] Xia S, Zhang X, Zheng S, et al. An update on in-flamm-aging: mechanisms, prevention, and treat-ment[J]. J Immunol Res, 2016, 2016:8426874.
[9] De la Fuente M, Miquel J. An update of the oxida-tion-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging[J]. Curr Pharm Des, 2009, 15(26):3003-3026.
[10] Cannizzo ES, Clement CC, Sahu R, et al. Oxidative stress, inflamm-aging and immunosenescence[J]. J Proteomics, 2011, 74(11):2313-2323.
[11] Marchal J, Pifferi F, Aujard F. Resveratrol in ma-mmals: effects on aging biomarkers, age-related diseases, and life span[J]. Ann N Y Acad Sci, 2013, 1290:67-73.
[12] Adams AA, Breathnach CC, Katepalli MP, et al. Advanced age in horses affects divisional history of T cells and inflammatory cytokine production[J]. Mech Ageing Dev, 2008, 129(11):656-664.
[13] Michaud M, Balardy L, Moulis G, et al. Proinflam-matory cytokines, aging, and age-related diseases[J]. J Am Med Dir Assoc, 2013, 14(12):877-882.
[14] Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity[J]. Arch Immunol Ther Exp(Warsz), 2016, 64(2):111-126.
[15] Bartek J, Hodny Z, Lukas J. Cytokine loops driving senescence[J]. Nat Cell Biol, 2008, 10(8):887-889.
[16] Watanabe S, Kawamoto S, Ohtani N, et al. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases[J]. Cancer Sci, 2017, 108(4):563- 569.
[17] Choubey D, Panchanathan R. IFI16, an amplifier of DNA-damage response: role in cellular senescence and aging-associated inflammatory diseases[J]. Ageing Res Rev, 2016, 28:27-36.
[18] Olivieri F, Albertini MC, Orciani M, et al. DNA damage response(DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging[J]. Oncotarget, 2015, 6(34):35509-35521.
[19] Bonafè M, Storci G, Franceschi C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine net-work fuels cancer in aged people[J]. Bioessays, 2012, 34(1):40-49.
[20] Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469 (7330):323-335.
[21] Juhász G, Erdi B, Sass M, et al. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila[J]. Genes Dev, 2007, 21(23):3061- 3066.
[22] Salminen A, Kaarniranta K, Kauppinen A. Inflamm-aging: disturbed interplay between autophagy and inflammasomes[J]. Aging(Albany NY), 2012, 4(3): 166-175.
[23] Eke PI, Dye BA, Wei L, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012[J]. J Periodontol, 2015, 86 (5):611-622.
[24] Huang ES, Laiteerapong N, Liu JY, et al. Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study[J]. JAMA Intern Med, 2014, 174(2):251-258.
[25] Patil VS, Patil VP, Gokhale N, et al. Chronic perio-dontitis in type 2 diabetes mellitus: oxidative stress as a common factor in periodontal tissue injury[J]. J Clin Diagn Res, 2016, 10(4):BC12-BC16.
[26] Pradeep AR, Agarwal E, Bajaj P, et al. 4-Hydroxy-2-nonenal, an oxidative stress marker in crevicular fluid and serum in type 2 diabetes with chronic periodontitis[J]. Contemp Clin Dent, 2013, 4(3):281- 285.
[27] Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: a two-way relationship[J]. Diabetolo-gia, 2012, 55(1):21-31.
[28] Mesia R, Gholami F, Huang H, et al. Systemic in-flammatory responses in patients with type 2 dia-betes with chronic periodontitis[J]. BMJ Open Dia-betes Res Care, 2016, 4(1):e000260.
[29] Sriram S, Subramanian S, Juvvuna PK, et al. Myos-tatin induces DNA damage in skeletal muscle of streptozotocin-induced type 1 diabetic mice[J]. J Biol Chem, 2014, 289(9):5784-5798.
[30] Öngöz Dede F, Bozkurt Doğan Ş, Ballı U, et al. The effect of initial periodontal treatment on plasma, gingival crevicular fluid and salivary levels of 8-hydroxy-deoxyguanosine in obesity[J]. Arch Oral Biol, 2016, 62:80-85.
[31] Ayilavarapu S, Kantarci A, Hasturk H, et al. IPLA2 mRNA expression by human neutrophils in type 2 diabetes and chronic periodontitis[J]. J Int Acad Periodontol, 2014, 16(4):121-126.
[32] Bullon P, Cordero MD, Quiles JL, et al. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation[J]. BMC Med, 2012, 10:122.
[33] Qian M, Fang X, Wang X. Autophagy and in-flammation[J]. Clin Transl Med, 2017, 6(1):24.
[34] Tang D, Kang R, Livesey KM, et al. Endogenous HMGB1 regulates autophagy[J]. J Cell Biol, 2010, 190(5):881-892.
[35] Wang Y, Li YB, Yin JJ, et al. Autophagy regulates inflammation following oxidative injury in diabetes [J]. Autophagy, 2013, 9(3):272-277.
[1] 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89.
[2] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[3] 吴东蕾,刘静. 氧化应激损伤与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 62-67.
[4] 陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月. 双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 209-213.
[5] 陈冠辉 侯劲松. 低氧和自噬与肿瘤的发生发展[J]. 国际口腔医学杂志, 2016, 43(5): 584-588.
[6] 任静宜1 刘歆婵1 丁烨1 于洪强1 周延民1 于维先2. 细胞自噬和炎症反应的相互调控与牙周炎[J]. 国际口腔医学杂志, 2016, 43(4): 462-467.
[7] 金淑芳 蒋灿华. 细胞自噬相关蛋白8及其连接系统与头颈部恶性肿瘤[J]. 国际口腔医学杂志, 2014, 41(2): 195-198.
[8] 穆萍萍 宋晖 孙钦峰. 高速泳动族蛋白盒1与牙周病[J]. 国际口腔医学杂志, 2014, 41(1): 77-81.
[9] 董小倩 冯云. 高迁移率族蛋白N家族抗肿瘤活性的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 364-367.
[10] 邢雪 卢树静 金鑫综述 陈谦明 曾昕审校. 细胞自噬及其与口腔鳞状细胞癌间的相关性[J]. 国际口腔医学杂志, 2013, 40(2): 253-256.
[11] 常珍1综述 李容林1 李春阳2审校. 细胞自噬在口腔扁平苔藓恶变中作用的研究进展[J]. 国际口腔医学杂志, 2012, 39(3): 416-420.
[12] 赵飞综述 王革审校. 牙科铸造合金诱发慢性毒副作用细胞机制的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 244-247.
[13] 刘斌综述 梁景平审校. 牙龈卟啉单胞菌与细胞自噬相关性的研究进展[J]. 国际口腔医学杂志, 2012, 39(1): 83-85.
[14] 李华菁综述 付云审校. 高级氧化蛋白产物在糖尿病相关性牙周炎中的作用[J]. 国际口腔医学杂志, 2011, 38(6): 677-680.
[15] 徐惠霞综述 付云审校. 氧化应激在糖尿病相关性牙周炎发病中的作用[J]. 国际口腔医学杂志, 2011, 38(5): 592-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .