国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 591-595.doi: 10.7518/gjkq.2017.05.020

• 综述 • 上一篇    下一篇

氧化石墨烯在生物医学领域方面应用的研究进展

王婷, 葛少华   

  1. 山东大学口腔医院牙周科,山东省口腔组织再生重点实验室 济南 250012
  • 收稿日期:2016-11-13 修回日期:2017-06-26 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 葛少华,教授,博士,Email:shaohuage@sdu.edu.cn
  • 作者简介:王婷,学士,Email:1195400807@qq.com
  • 基金资助:

    国家自然科学基金(81670993,81371157)

Research progress on the application of graphene oxide in the field of biomedicine

Wang Ting, Ge Shaohua.   

  1. Dept. of Periodontology, Hospital of Stomatology, Shandong University;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-13 Revised:2017-06-26 Online:2017-09-01 Published:2017-09-01
  • Supported by:

    ; This study was supported by National Natural Science Foundation of China(81670993, 81371157).

摘要:

氧化石墨烯是石墨烯经含氧官能团化学修饰得到的复合材料,除兼有石墨烯优良的物理、化学性质外,还可提供较大的表面积,促进干细胞增殖、成骨分化,且具有独特的生物相容性和抗菌性能,从而为其在生物医学方面的应用提供了广泛的前景。本文综述了氧化石墨烯应用于药物与蛋白传递、骨组织再生、抗菌抗炎方面的研究进展及其可能存在的不良反应。

关键词: 石墨烯, 氧化石墨烯, 药物传递, 组织工程, 抗菌抗炎, 不良反应

Abstract:

Graphene oxide(GO) is a chemically modified composite material of graphene by oxygen-containing functional groups. In addition to excellent chemical and physical properties of graphene, GO can provide larger surface area, promote stem cell proliferation, osteogenic differentiation, and has unique biocompatibility and antibacterial properties, resulting in broad prospects of application in the field of biomedicine. This article reviews the progress of graphene oxide on drug and protein delivery, bone tissue engineering, anti-inflammatory and antibacterial actions, and the possible toxic and side effects.

Key words: graphene, graphene oxide, drug delivery, tissue engineering, anti-inflammatory action, adverse reaction

中图分类号: 

  • R783.1
[1] Gu M, Liu Y, Chen T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue enginee-ring[J]. Tissue Eng Part B Rev, 2014, 20(5):477-491.
[2] Chowdhury SM, Surhland C, Sanchez Z, et al. Gra-phene nanoribbons as a drug delivery agent for lucan-thone mediated therapy of glioblastoma multiforme [J]. Nanomedicine, 2015, 11(1):109-118.
[3] La WG, Park S, Yoon HH, et al. Delivery of a thera-peutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013, 9(23): 4051-4060.
[4] La WG, Jin M, Park S, et al. Delivery of bone mor-phogenetic protein-2 and substance P using graphene oxide for bone regeneration[J]. Int J Nanomedicine, 2014, 9(Suppl 1):107-116.
[5] Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic diffe-rentiation of goat adult mesenchymal stem cells: po-tential for bone tissue engineering[J]. J Appl Toxicol, 2015, 35(4):367-374.
[6] Kalbacova M, Broz A, Kalbac M. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene[J]. J Biomed Mater Res A, 2012, 100(11):3001-3007.
[7] Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differen-tiation of human mesenchymal stem cells[J]. ACS Nano, 2011, 5(6):4670-4678.
[8] Aryaei A, Jayatissa AH, Jayasuriya AC. The effect of graphene substrate on osteoblast cell adhesion and proliferation[J]. J Biomed Mater Res A, 2014, 102 (9):3282-3290.
[9] Dubey N, Bentini R, Islam I, et al. Graphene: a ver-satile carbon-based material for bone tissue enginee-ring[J]. Stem Cells Int, 2015, 2015:804213.
[10] Kim J, Choi KS, Kim Y, et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells[J]. J Biomed Mater Res A, 2013, 101(12):3520-3530.
[11] Kim J, Kim YR, Kim Y, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells[J]. J Mater Chem B, 2013, 1(7):933-938.
[12] Dinescu S, Ionita M, Pandele AM, et al. In vitro cyto-compatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engi-neering[J]. Biomed Mater Eng, 2014, 24(6):2249- 2256.
[13] Nair M, Nancy D, Krishnan AG, et al. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite sca-ffolds enhance osteogenic differentiation of human mesenchymal stem cells[J]. Nanotechnology, 2015, 26(16):161001.
[14] Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. J Biomed Mater Res A, 2015, 103 (4):1424-1435.
[15] Crowder SW, Prasai D, Rath R, et al. Three-dimen-sional graphene foams promote osteogenic differen-tiation of human mesenchymal stem cells[J]. Nano-scale, 2013, 5(10):4171-4176.
[16] Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extrace-llular matrix[J]. Cell Stem Cell, 2009, 5(1):17-26.
[17] Xie H, Cao T, Gomes J V, et al. Two and three-dimen-sional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells[J]. Carbon, 2015, 93:266-275.
[18] Kanayama I, Miyaji H, Takita H, et al. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide[J]. Int J Nanomedicine, 2014, 9:3363-3373.
[19] La WG, Kwon SH, Lee TJ, et al. The effect of the delivery carrier on the quality of bone formed via bone morphogenetic protein-2[J]. Artif Organs, 2012, 36(7):642-647.
[20] Lee WC, Lim CH, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011, 5(9):7334- 7341.
[21] Li M, Liu Q, Jia Z, et al. Graphene oxide/hydroxya-patite composite coatings fabricated by electropho-retic nanotechnology for biological applications[J]. Carbon, 2014, 67:185-197.
[22] Xie Y, Li H, Zhang C, et al. Graphene-reinforced calcium silicate coatings for load-bearing implants [J]. Biomed Mater, 2014, 9(2):025009.
[23] He J, Zhu X, Qi Z, et al. Killing dental pathogens using antibacterial graphene oxide[J]. ACS Appl Mater Interfaces, 2015, 7(9):5605-5611.
[24] Kulshrestha S, Khan S, Meena R, et al. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans[J]. Biofouling, 2014, 30(10):1281-1294.
[25] Lim HN, Huang NM, Loo CH. Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties[J]. J Non-Crystal Sol, 2012, 358(3):525-530.
[26] Song Q, Jiang Z, Li N, et al. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells[J]. Biomaterials, 2014, 35(25): 6930-6940.
[27] Nanda SS, An SS, Yi DK. Oxidative stress and anti-bacterial properties of a graphene oxide-cystamine nanohybrid[J]. Int J Nanomedicine, 2015, 10:549- 556.
[28] Liu S, Zeng TH, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9):6971-6980.
[29] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol, 2013, 8(8):594-601.
[30] Gurunathan S, Han JW, Eppakayala V, et al. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells[J]. Int J Nanomedicine, 2013, 8:1015-1027.
[31] Wang ZG, Zhou R, Jiang D, et al. Toxicity of gra-phene quantum dots in zebrafish embryo[J]. Biomed Environ Sci, 2015, 28(5):341-351.
[32] Chng EL, Pumera M. The toxicity of graphene oxides: dependence on the oxidative methods used[J]. Che-mistry, 2013, 19(25):8227-8235.
[33] Liao KH, Lin YS, Macosko CW, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Appl Mater Interfaces, 2011, 3(7):2607-2615.
[34] Fu C, Liu T, Li L, et al. Effects of graphene oxide on the development of offspring mice in lactation period [J]. Biomaterials, 2015, 40:23-31.
[35] Yang K, Wan J, Zhang S, et al. In vivo pharmacoki-netics, long-term biodistribution, and toxicology of PEGylated graphene in mice[J]. ACS Nano, 2011, 5(1):516-522.
[36] Yan L, Wang Y, Xu X, et al. Can graphene oxide cause damage to eyesight[J]. Chem Res Toxicol, 2012, 25(6):1265-1270.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[3] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[4] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[5] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[6] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[7] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[8] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[9] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[10] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[11] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[12] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[13] 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672.
[14] 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677.
[15] 邓雪阳,潘兰兰,胡婷,李文华,向学熔. 钛合金表面氧化石墨烯涂层的制备[J]. 国际口腔医学杂志, 2018, 45(5): 539-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .