国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 298-302.doi: 10.7518/gjkq.2016.03.011

• 综述 • 上一篇    下一篇

干细胞和支架与牙髓再生及其血运重建

李州1,许庆安1,2   

  1. 1.口腔基础医学省部共建国家重点实验室培育基地和口腔生物医学教育部重点实验室,武汉大学口腔医学院;2.武汉大学口腔医院牙体牙髓病科 武汉 430079
  • 收稿日期:2015-06-06 修回日期:2016-02-29 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 许庆安,主任医师,博士,Email:xuqingan@whu.edu.cn
  • 作者简介:李州,硕士,Email:xlizhou@163.com
  • 基金资助:
    国家自然科学基金(81000435);湖北省自然科学基金 (2014CFB722)

Stem cells and scaffolds in dental pulp regeneration and revascularization

Li Zhou, Xu Qing’an   

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; 2. Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Wuhan University, Wuhan 430079, China) This study was supported by the National Natural Science Foundation of China(81000435)and the Natural Science Foundation of Hubei Province(2014CFB722).
  • Received:2015-06-06 Revised:2016-02-29 Online:2016-05-01 Published:2016-05-01

摘要: 在牙髓再生中,获取干细胞的方法包括干细胞移植、细胞归巢和诱导出血。干细胞移植可产生异位的牙髓样组织,可控制移植细胞的数量并选择对牙髓再生潜在效能最佳的细胞亚种。细胞归巢是指利用信号分子招募宿主内源性干细胞至需治疗的牙体根管中增殖和分化,形成牙髓-牙本质样组织。诱导根尖出血进入根管为年轻恒牙牙髓再生的一个重要步骤。支架是细胞在合成组织时的支撑结构,可促进细胞黏附,为牙髓再生提供有利的环境。牙髓再生离不开血运重建或者血管再生,感染控制、根管预处理、冠方封闭等操作,可为牙髓再生包括其血运重建提供适宜的环境。总之,组织工程技术在牙髓领域的应用发展为牙髓再生带来了新的希望。

关键词: 牙髓再生, 组织工程, 干细胞, 支架, 细胞因子, 牙髓再生, 组织工程, 干细胞, 支架, 细胞因子

Abstract: Regenerative endodontics is defined as biologically based procedures designed to replace damaged structures, including dentin and root structures, as well as cells of the pulp–dentin complex. The methods of acquiring stem cells include stem-cell transplantation, cell homing, and induced bleeding. Stem-cell transplantation can yield ectopic dental pulp-like tissues, with the advantages of easily controlling the number of cells transplanted and selecting the optimal subpopulation of stem/progenitor cells. Meanwhile, cell homing is defined as the migration of endogenous host stem cells to the root canal of the offending teeth using signaling molecules. The process is also characterized by the subsequent proliferation and differentiation of the endogenous host stem cells into pulp–dentin-like tissues. Inducing pulp bleeding into the root canals of immature permanent teeth is an important step in regenerative endodontics. Scaffold refers to the structural support for the cells that synthesize tissues. This component promotes cell attachment and provides a specific environment conducive to pulp or dentin regeneration. Pulp regeneration cannot take place without revascularization or angiogenesis. Procedures such as infection control, pretreatment of root canals, and coronal sealing, provide a favorable environment for pulp regeneration, including pulp revascularization. The application and development of tissue engineering technology in endodontics bring new hope for dental pulp regeneration, despite the occurrence of numerous problems.

Key words: dental pulp regeneration, tissue en-gineering, stem cell, scaffold, growth factor, dental pulp regeneration, tissue en-gineering, stem cell, scaffold, growth factor

中图分类号: 

  • Q 81
[1] Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action[J]. J Endod, 2007, 33(4):377-390.
[2] Egusa H, Sonoyama W, Nishimura M, et al. Stem cells in dentistry—part Ⅰ: stem cell sources[J]. J Prosthodont Res, 2012, 56(3):151-165.
[3] Hargreaves KM, Cohen S. Cohen’s pathways of the pulp[M]. 10th ed. St. Louis: Elsevier Medicine, 2011:602-619.
[4] 庞欣, 樊明文, 杨雪超. 组织工程牙髓再生的研究进展[J]. 口腔医学研究, 2013, 29(11):1086-1088.
Pang X, Fan MW, Yang XC. The research progress of dental pulp regeneration in tissue engineering[J]. J Oral Sci Res, 2013, 29(11):1086-1088.
[5] Ishizaka R, Iohara K, Murakami M, et al. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue[J]. Biomaterials, 2012, 33(7):2109-2118.
[6] Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1[J]. Tissue Eng Part A, 2011, 17(15/16):1911-1920.
[7] Huang GT, Yamaza T, Shea LD, et al. Stem/ progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model[J]. Tissue Eng Part A, 2010, 16(2):605-615.
[8] Iohara K, Zheng L, Ito M, et al. Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth[J]. Regen Med, 2009, 4(3):377-385.
[9] Kuo TF, Huang AT, Chang HH, et al. Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatin-chondroitin-hyaluronan tri-copolymer scaffold in swine[J]. J Biomed Mater Res A, 2008, 86(4):1062-1068.
[10] Alongi DJ, Yamaza T, Song Y, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential[J]. Regen Med, 2010, 5(4):617-631.
[11] Mao JJ, Kim SG, Zhou J, et al. Regenerative endodontics: barriers and strategies for clinical translation [J]. Dent Clin North Am, 2012, 56(3):639-649.
[12] Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study[J]. Lancet, 2010, 376(9739):440-448.
[13] Kim K, Lee CH, Kim BK, et al. Anatomically shaped tooth and periodontal regeneration by cell homing[J]. J Dent Res, 2010, 89(8):842-847.
[14] Kim SG, Zhou J, Solomon C, et al. Effects of growth factors on dental stem/progenitor cells[J]. Dent Clin North Am, 2012, 56(3):563-575.
[15] Suzuki T, Lee CH, Chen M, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration[J]. J Dent Res, 2011, 90(8):1013-1018.
[16] Kim JY, Xin X, Moioli EK, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing[J]. Tissue Eng Part A, 2010, 16(10):3023-3031.
[17] Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using plateletrich plasma: a case report[J]. J Endod, 2011, 37(2):265-268.
[18] Kim SG, Zheng Y, Zhou J, et al. Dentin and dental pulp regeneration by the patient’s endogenous cells [J]. Endod Topics, 2013, 28(1):106-117.
[19] Lovelace TW, Henry MA, Hargreaves KM, et al. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure[J]. J Endod, 2011, 37(2):133-138.
[20] Wang X, Thibodeau B, Trope M, et al. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis[J]. J Endod, 2010, 36(1):56-63.
[21] Wei X, Ling J, Wu L, et al. Expression of mineralization markers in dental pulp cells[J]. J Endod, 2007, 33(6):703-708.
[22] Galler KM, Eidt A, Schmalz G. Cell-free approaches for dental pulp tissue engineering[J]. J Endod, 2014, 40(4 Suppl):S41-S45.
[23] Chen FM, Wu LA, Zhang M, et al. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives[J]. Biomaterials, 2011, 32(12):3189-3209.
[24] Ding RY, Cheung GS, Chen J, et al. Pulp revascularization of immature teeth with apical periodontitis: a clinical study[J]. J Endod, 2009, 35(5):745-749.
[25] Park M, Ahn BD. Immature permanent teeth with apical periodontitis and abscess treated by regenerative endodontic treatment using calcium hydroxide and MTA: a report of two cases[J]. Pediatr Dent, 2014, 36(3):107-110.
[26] Chueh LH, Ho YC, Kuo TC, et al. Regenerative endodontic treatment for necrotic immature permanent teeth[J]. J Endod, 2009, 35(2):160-164.
[27] Paryani K, Kim SG. Regenerative endodontic treatment of permanent teeth after completion of root development: a report of 2 cases[J]. J Endod, 2013, 39(7):929-934.
[28] Saoud TM, Sigurdsson A, Rosenberg PA, et al. Treatment of a large cystlike inflammatory periapical lesion associated with mature necrotic teeth using regenerative endodontic therapy[J]. J Endod, 2014, 40(12):2081-2086.
[29] Yuan Z, Nie H, Wang S, et al. Biomaterial selection for tooth regeneration[J]. Tissue Eng Part B Rev, 2011, 17(5):373-388.
[30] Kim HJ, Kim UJ, Leisk GG, et al. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds [J]. Macromol Biosci, 2007, 7(5):643-655.
[31] Zhang W, Walboomers XF, van Kuppevelt TH, et al. The performance of human dental pulp stem cells on different three-dimensional scaffold materials[J]. Biomaterials, 2006, 27(33):5658-5668.
[32] 李红玖, 姚志文, 王宾, 等. 牙髓再生的临床研究[J]. 临床口腔医学杂志, 2013, 29(6):366-368.
Li HJ, Yao ZW, Wang B, et al. The clinical studies of pulp regeneration in vivo[J]. J Clin Stomatol, 2013, 29(6):366-368.
(本文采编 王晴)
[1] 石玉. 骨骼发育中骨骼干细胞的鉴定[J]. 国际口腔医学杂志, 2020, 47(3): 249-256.
[2] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[3] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[4] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[5] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[6] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[7] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[8] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[9] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[10] 陈宏丽,杨敬,尹刚,李皓缘,乔燕. 锌指蛋白32在口腔鳞状细胞癌中的表达意义及对口腔鳞状细胞癌干细胞的影响[J]. 国际口腔医学杂志, 2019, 46(6): 631-639.
[11] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[12] 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545.
[13] 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603.
[14] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[15] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .