Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 205-215.doi: 10.7518/gjkq.2026003
• Original Articles • Previous Articles
Manman Yao(
),Yueting Lu(
),Jingjing Wu,Tiejun Liu,Yongle Qiu,Hongyue Shang,Bo Dong
CLC Number:
| [1] | Deng X, Wang Y, Jiang L, et al. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment[J]. Front Immunol, 2023, 13: 1023213. |
| [2] | Lin DJ, Yang LS, Wen LL, et al. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis[J]. Mucosal Immunol, 2021, 14(6): 1247-1258. |
| [3] | Louisy A, Humbert E, Samimi M. Oral lichen planus: an update on diagnosis and management[J]. Am J Clin Dermatol, 2024, 25(1): 35-53. |
| [4] | Dave A, Shariff J, Philipone E. Association between oral lichen planus and systemic conditions and medi-cations: case-control study[J]. Oral Dis, 2021, 27(3): 515-524. |
| [5] | Wang J, Yang JJ, Wang C, et al. Systematic review and meta-analysis of oxidative stress and antioxidant markers in oral lichen planus[J]. Oxid Med Cell Longev, 2021, 2021: 9914652. |
| [6] | Chiu YW, Su YF, Yang CC, et al. Is OLP potentially malignant? A clue from ZNF582 methylation[J]. Oral Dis, 2023, 29(3): 1282-1290. |
| [7] | Bindakhil M, Akintoye S, Corby P, et al. Influence of topical corticosteroids on malignant transformation of oral lichen planus[J]. J Oral Pathol Med, 2022, 51(2): 188-193. |
| [8] | Alrashdan MS, Cirillo N, McCullough M. Oral lichen planus: a literature review and update[J]. Arch Dermatol Res, 2016, 308(8): 539-551. |
| [9] | Shalaby R, El Nawawy M, Selim K, et al. The role of vitamin D in amelioration of oral lichen planus and its effect on salivary and tissue IFN-γ level: a randomized clinical trial[J]. BMC Oral Health, 2024, 24(1): 813. |
| [10] | Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead[J]. Nat Rev Mol Cell Biol, 2024, 25(1): 65-82. |
| [11] | Banerjee S, Mukherjee S, Mitra S, et al. Comparative evaluation of mitochondrial antioxidants in oral potentially malignant disorders[J]. Kurume Med J, 2020, 66(1): 15-27. |
| [12] | Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases[J]. Front Immunol, 2023, 14: 1160035. |
| [13] | Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus[J]. J Diabetes Metab Di-sord, 2020, 19(2): 2017-2022. |
| [14] | Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73-79. |
| [15] | Chai YC, Mieyal JJ. Glutathione and glutaredoxin-key players in cellular redox homeostasis and signa-ling[J]. Antioxidants (Basel), 2023, 12(8): 1553. |
| [16] | Scalcon V, Folda A, Lupo MG, et al. Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice[J]. Redox Biol, 2022, 51: 102277. |
| [17] | Li CL, Xin H, Shi YP, et al. Glutaredoxin 2 protects cardiomyocytes from hypoxia/reoxygenation-induced injury by suppressing apoptosis, oxidative stress, and inflammation via enhancing Nrf2 signa-ling[J]. Int Immunopharmacol, 2021, 94: 107428. |
| [18] | Liu YN, Gong JL, Wang Q, et al. Activation of the Nrf2/HO-1 axis by glutaredoxin 2 overexpression antagonizes vascular endothelial cell oxidative injury and inflammation under LPS exposure[J]. Cytotechnology, 2024, 76(2): 167-178. |
| [19] | Xiang XJ, Song L, Deng XJ, et al. Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer’s disease-like pathology[J]. Exp Neurol, 2019, 318: 145-156. |
| [20] | Hansel A, Kuschel L, Hehl S, et al. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins[J]. FASEB J, 2002, 16(8): 911-913. |
| [21] | Inokuchi Y, Quaglia F, Hirashima A, et al. Role of ribosome recycling factor in natural termination and translational coupling as a ribosome releasing factor[J]. PLoS One, 2023, 18(2): e0282091. |
| [22] | Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: an initiator tRNA-centric view[J]. Mol Microbiol, 2024, 122(5): 772-788. |
| [23] | Kasapkara CS, Ürey BC, Ceylan AC, et al. Malonyl coenzyme A decarboxylase deficiency with a novel mutation[J]. Cardiol Young, 2021, 31(9): 1535-1537. |
| [24] | Zhou LJ, Luo YB, Liu YN, et al. Fatty acid oxidation mediated by malonyl-CoA decarboxylase represses renal cell carcinoma progression[J]. Cancer Res, 2023, 83(23): 3920-3939. |
| [25] | Chapel-Crespo C, Gavrilov D, Sowa M, et al. Clinical, biochemical and molecular characteristics of malonyl-CoA decarboxylase deficiency and long-term follow-up of nine patients[J]. Mol Genet Metab, 2019, 128(1/2): 113-121. |
| [26] | Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism[J]. Adv Biol Regul, 2019, 71: 34-40. |
| [27] | Mallick R, Basak S, Duttaroy AK. Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers[J]. Prog Lipid Res, 2021, 83: 101116. |
| [28] | Vila IK, Chamma H, Steer A, et al. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses[J]. Cell Metab, 2022, 34(1): 125-139.e8. |
| [29] | Xu Z, Han Q, Yang D, et al. Automatic detection of image-based features for immunosuppressive therapy response prediction in oral lichen planus[J]. Front Immunol, 2022, 13: 942945. |
| [30] | Deng J, Pan WY, Ji N, et al. Cell-free DNA promotes inflammation in patients with oral lichen planus via the STING pathway[J]. Front Immunol, 2022, 13: 838109. |
| [31] | Paluch KV, Platz KR, Rudisel EJ, et al. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12[J]. Proteins, 2024, 92(5): 583-592. |
| [32] | Huang G, Li H, Zhang H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases[J]. Int J Mol Sci, 2020, 21(22): 8879. |
| [33] | Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322(4): L507-L517. |
| [34] | Zhang JB, Simpson CM, Berner J, et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway[J]. Cell, 2023, 186(11): 2361-2379.e25. |
|
||