Int J Stomatol ›› 2024, Vol. 51 ›› Issue (4): 416-424.doi: 10.7518/gjkq.2024037

• Periodontitis • Previous Articles     Next Articles

Research progress on chitosan in periodontal disease treatment

Xingyue Wen1(),Junyu Zhao1,Chongjun Zhao1,Guixin Wang2,Ruijie Huang1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.School of Chemical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2023-08-06 Revised:2023-11-21 Online:2024-07-01 Published:2024-06-24
  • Contact: Ruijie Huang E-mail:2054287673@qq.com;hwangrj@163.com
  • Supported by:
    National Natural Science Foundation of China(21978179);Sichuan University Innovation and Entrepreneurship Training Program under Grants(C2023122912)

Abstract:

Chitosan is the only naturally occurring cationic polysaccharide and has gradually become a focus of attention in tissue engineering due to its good biocompatibility; biodegradability; antibacterial, anti-inflammatory, anticancer, and tissue repair activity; and great drug delivery capacity. Periodontal disease, as an inflammatory and destructive di-sease, has a high prevalence and significant impact on oral health and even systemic health. In this review, we summarize the role of chitosan in periodontal therapy, including its regenerative scaffolding; drug delivery; and antibacterial, anti-inflammatory, and angiogenesis-promoting effects. We then analyze current issues and point out possible future directions for its development, aiming to provide solutions to problems encountered in periodontal disease treatment.

Key words: periodontal disease, chitosan, multidirectional scaffold, drug delivery, antibacterial properties

CLC Number: 

  • R781.4

TrendMD: 

Fig 1

The role of chitosan in periodontal treatment"

Fig 2

Mechanism of controlled drug release from chitosan scaffolds"

1 Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis[J]. Nat Rev Microbiol, 2010, 8(7): 481-490.
2 Kinane DF, Stathopoulou PG, Papapanou PN. Pe-riodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
3 Trindade D, Carvalho R, Machado V, et al. Prevalence of periodontitis in dentate people between 2011 and 2020: a systematic review and meta-analysis of epidemiological studies[J]. J Clin Periodontol, 2023, 50(5): 604-626.
4 Larsson L, Decker AM, Nibali L, et al. Regenerative medicine for periodontal and peri-implant di-seases[J]. J Dent Res, 2016, 95(3): 255-266.
5 Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods[J]. Int J Biol Macromol, 2021, 169: 85-94.
6 Lagarto A, Merino N, Valdes O, et al. Safety evaluation of chitosan and chitosan acid salts from Panurilus Argus lobster[J]. Int J Biol Macromol, 2015, 72: 1343-1350.
7 Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry[J]. Int J Biol Macromol, 2020, 162: 956-974.
8 Aguilar A, Zein N, Harmouch E, et al. Application of chitosan in bone and dental engineering[J]. Molecules, 2019, 24(16): 3009.
9 Baskar D, Balu R, Sampath Kumar TS. Mineralization of pristine chitosan film through biomimetic process[J]. Int J Biol Macromol, 2011, 49(3): 385-389.
10 Gao HY, Wu N, Wang NN, et al. Chitosan-based therapeutic systems and their potentials in treatment of oral diseases[J]. Int J Biol Macromol, 2022, 222(Pt B): 3178-3194.
11 Zhang YF, Dou XY, Zhang LY, et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration[J]. Bioact Mater, 2022, 11: 130-139.
12 Sacco P, Furlani F, de Marzo G, et al. Concepts for developing physical gels of chitosan and of chitosan derivatives[J]. Gels, 2018, 4(3): 67.
13 Cosco D, Failla P, Costa N, et al. Rutin-loaded chitosan microspheres: characterization and evaluation of the anti-inflammatory activity[J]. Carbohydr Polym, 2016, 152: 583-591.
14 Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, et al. Chitosan films and scaffolds for regenerative medicine applications: a review[J]. Carbohydr Polym, 2021, 273: 118631.
15 Vaquette C, Pilipchuk SP, Bartold PM, et al. Tissue engineered constructs for periodontal regeneration: current status and future perspectives[J]. Adv Healthc Mater, 2018, 7(21): e1800457.
16 Liang YX, Luan XH, Liu XH. Recent advances in periodontal regeneration: a biomaterial perspective[J]. Bioact Mater, 2020, 5(2): 297-308.
17 Woo HN, Cho YJ, Tarafder S, et al. The recent advances in scaffolds for integrated periodontal rege-neration[J]. Bioact Mater, 2021, 6(10): 3328-3342.
18 Islam MM, Shahruzzaman M, Biswas S, et al. Chitosan based bioactive materials in tissue engineering applications-a review[J]. Bioact Mater, 2020, 5(1): 164-183.
19 Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769.
20 Abdelaziz D, Hefnawy A, Al-Wakeel E, et al. New biodegradable nanoparticles-in-nanofibers based me-mbranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res, 2021, 28: 51-62.
21 Zhang L, Dong YS, Zhang N, et al. Potentials of sandwich-like chitosan/polycaprolactone/gelatin sca-ffolds for guided tissue regeneration membrane[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110618.
22 Chichiricco PM, Riva R, Thomassin JM, et al. In situ photochemical crosslinking of hydrogel membrane for Guided Tissue Regeneration[J]. Dent Mater, 2018, 34(12): 1769-1782.
23 Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011, 7(1): 216-224.
24 Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112298.
25 Varoni EM, Vijayakumar S, Canciani E, et al. Chitosan-based trilayer scaffold for multitissue periodontal regeneration[J]. J Dent Res, 2018, 97(3): 303-311.
26 Shah AT, Zahid S, Ikram F, et al. Tri-layered functionally graded membrane for potential application in periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109812.
27 Lauritano D, Limongelli L, Moreo G, et al. Nanomaterials for periodontal tissue engineering: chitosan-based scaffolds. A systematic review[J]. Nanomaterials, 2020, 10(4): 605.
28 Kim Y, Zharkinbekov Z, Raziyeva K, et al. Chitosan-based biomaterials for tissue regeneration[J]. Pharmaceutics, 2023, 15(3): 807.
29 Hsu SH, Huang GS, Lin SY, et al. Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes[J]. Tissue Eng Part A, 2012, 18(1/2): 67-79.
30 Wang ZS, Wu GS, Yang ZJ, et al. Chitosan/hya-luronic acid/MicroRNA-21 nanoparticle-coated s-mooth titanium surfaces promote the functionality of human gingival fibroblasts[J]. Int J Nanomedicine, 2022, 17: 3793-3807.
31 de Sousa Victor R, Marcelo da Cunha Santos A, Via-na de Sousa B, et al. A review on chitosan’s uses as biomaterial: tissue engineering, drug delivery systems and cancer treatment[J]. Materials, 2020, 13(21): 4995.
32 Bharathi R, Ganesh SS, Harini G, et al. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering[J]. Int J Biol Macromol, 2022, 222(Pt A): 132-153.
33 Gentile P, Nandagiri VK, Daly J, et al. Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 249-257.
34 Gull N, Khan SM, Zahid Butt MT, et al. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study[J]. RSC Adv, 2019, 9(53): 31078-31091.
35 Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems[J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1349-1362.
36 Saber-Samandari S, Saber-Samandari S. Biocompa-tible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 721-732.
37 Song YH, Li YH, Xu QE, et al. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook[J]. Int J Nanomedicine, 2017, 12: 87-110.
38 Zhao C, Qazvini NT, Sadati M, et al. A pH-triggered, self-assembled, and bioprintable hybrid hydrogel scaffold for mesenchymal stem cell based bone tissue engineering[J]. ACS Appl Mater Interfaces, 2019, 11(9): 8749-8762.
39 Özdoğan AI, İlarslan YD, Kösemehmetoğlu K, et al. In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis[J]. Int J Pharm, 2018, 550(1/2): 470-476.
40 Chang PC, Tai WC, Luo HT, et al. Core-shell poly-(D, l-lactide-co-glycolide)-chitosan nanospheres wi-th simvastatin-doxycycline for periodontal and osseous repair[J]. Int J Biol Macromol, 2020, 158: 627-635.
41 Xu XW, Gu ZY, Chen X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and ery-thropoietin[J]. Acta Biomater, 2019, 86: 235-246.
42 Arancibia R, Maturana C, Silva D, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts[J]. J Dent Res, 2013, 92(8): 740-745.
43 Divakar DD, Jastaniyah NT, Altamimi HG, et al. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver na-noparticle against dental implant pathogens[J]. Int J Biol Macromol, 2018, 108: 790-797.
44 Zupančič Š, Casula L, Rijavec T, et al. Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, eva-luated using a new micro flow-through apparatus[J]. J Control Release, 2019, 316: 223-235.
45 Peng PC, Hsieh CM, Chen CP, et al. Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model[J]. Int J Mol Sci, 2016, 17(11): 1821.
46 Liu XF, Guan YL, Yang DZ, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. J Appl Polym Sci, 2001, 79(7): 1324-1335.
47 Pyo-Jam P, Je JY, Byun HG, et al. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights[J]. J Microbiol Biotechnol, 2004, 14(2): 317-323.
48 Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria[J]. Int J Food Microbiol, 2001, 71(2/3): 235-244.
49 Sun ZM, Shi CG, Wang XY, et al. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan[J]. Carbohydr Polym, 2017, 155: 321-328.
50 Benhabiles MS, Salah R, Lounici H, et al. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste[J]. Food Hydrocoll, 2012, 29(1): 48-56.
51 Ouyang LP, Chen BH, Liu XD, et al. Puerarin@Chitosan composite for infected bone repair through mimicking the bio-functions of antimicrobial peptides[J]. Bioact Mater, 2023, 21: 520-530.
52 Vasconcelos DP, Fonseca AC, Costa M, et al. Macrophage polarization following chitosan implantation[J]. Biomaterials, 2013, 34(38): 9952-9959.
53 Davydova VN, Kalitnik AA, Markov PA, et al. Cytokine-inducing and anti-inflammatory activity of chitosan and its low-molecular derivative[J]. Prikl Biokhim Mikrobiol, 2016, 52(5): 460-466.
54 Ji QX, Deng J, Yu XB, et al. Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan[J]. Carbohydr Polym, 2013, 92(1): 824-829.
55 Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a ma-crophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126.
56 Baru O, Nutu A, Braicu C, et al. Angiogenesis in regenerative dentistry: are we far enough for therapy[J]. Int J Mol Sci, 2021, 22(2): 929.
57 Li JE, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix[J]. Microscopy Res Technique, 2003, 60(1): 107-114.
58 Divband B, Pouya B, Hassanpour M, et al. Towards induction of angiogenesis in dental pulp stem cells using chitosan-based hydrogels releasing basic fibroblast growth factor[J]. Biomed Res Int, 2022, 2022: 5401461.
59 Malik MH, Shahzadi L, Batool R, et al. Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxya-patite hydrogels enhance angiogenesis in in-ovo experiments[J]. Int J Biol Macromol, 2020, 145: 1162-1170.
60 Ojeda JE, Cardenas G, Klassen R, et al. Nitric oxide synthase activity and angiogenesis measured by expression of CD34 in burns treated with chitosan films[J]. Wounds, 2011, 23(5): 135-143.
61 Zahid AA, Ahmed R, Raza Ur Rehman S, et al. Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo mo-del[J]. Int J Biol Macromol, 2019, 136: 901-910.
62 Yu YM, Chen R, Sun Y, et al. Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan[J]. Acta Biomater, 2018, 71: 510-521.
63 Mohandas A, Anisha BS, Chennazhi KP, et al. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds[J]. Colloids Surf B Biointerfaces, 2015, 127: 105-113.
64 Soriente A, Amodio SP, Fasolino I, et al. Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111420.
65 Deng C, Zhang PC, Vulesevic B, et al. A collagen-chitosan hydrogel for endothelial differentiation and angiogenesis[J]. Tissue Eng Part A, 2010, 16(10): 3099-3109.
66 Jiang ZW, Han BQ, Li H, et al. Carboxymethyl chitosan represses tumor angiogenesis in vitro and in vivo [J]. Carbohydr Polym, 2015, 129: 1-8.
67 Pihlstrom BL, Michalowicz BS, Johnson NW. Pe-riodontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820.
68 Liu JY, Xiao Y, Wang XY, et al. Glucose-sensitive delivery of metronidazole by using a photo-crosslinked chitosan hydrogel film to inhibit Porphyromonas gingivalis proliferation[J]. Int J Biol Macromol, 2019, 122: 19-28.
69 Hao YP, Zhao WW, Zhang H, et al. Carboxymethyl chitosan-based hydrogels containing fibroblast grow-th factors for triggering diabetic wound healing[J]. Carbohydr Polym, 2022, 287: 119336.
70 Khaliq T, Sohail M, Minhas MU, et al. Self-crosslinked chitosan/κ-carrageenan-based biomimetic me-mbranes to combat diabetic burn wound infections[J]. Int J Biol Macromol, 2022, 197: 157-168.
[1] Dongna Li, Haoyan Zhai, Chunyan Liu. Research progress on combined orthodontic-periodontal treatment [J]. Int J Stomatol, 2024, 51(3): 326-336.
[2] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[3] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[4] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[5] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[6] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[7] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[8] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[9] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[10] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[11] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[12] Shen Yifen,Liu Chao,Tang Ying,Gu Yongchun. Research progress on effects of electronic cigarette exposure on periodontal health [J]. Int J Stomatol, 2021, 48(3): 347-353.
[13] Qin Xiaoru,Liu Mengyuan. Association between periodontal disease and myocardial infarction: a Meta-analysis of cohort studies [J]. Int J Stomatol, 2021, 48(2): 165-172.
[14] Chen Liang,Ding Yi,Meng Shu. Research progress of host modulation therapy in the treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(6): 706-710.
[15] Jia Leming,Jia Xiaoyue,Yang Ran,Zhou Xuedong,Xu Xin. Progress on the application of probiotics in the management of periodontal diseases [J]. Int J Stomatol, 2020, 47(5): 515-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .