Int J Stomatol ›› 2019, Vol. 46 ›› Issue (4): 431-436.doi: 10.7518/gjkq.2019054

• Reviews • Previous Articles     Next Articles

Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation

Mei Hongxiang1,Zhang Yidan1,Zhang Chenghao2,Liu Enyan1,Chen Hao1,Zhao Zhihe2,Liao Wen2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China;
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
  • Received:2018-11-10 Revised:2019-04-02 Online:2019-07-01 Published:2019-07-12
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31600752);Undergraduate Student Innovation and Entrepreneurship Training Program of Sichuan University(C2018103847);Sichuan University-Luzhou Municipal Government Strategic Cooperation Project(2018CDLZ-14)

Abstract:

Tea polyphenols are a general term for polyphenols in tea, and epigallocatechin-3-gallate (EGCG) is a major component. As an antioxidant, EGCG can participate in the regulation of various life processes, including anti-inflammatory and anti-tumour activities. Epidemiological investigations and animal experiments have confirmed that EGCG can inhibit periodontitis and subsequent bone loss. Therefore, it might be a potential adjuvant treatment for periodontal treatment. Due to its anti-inflammatory and osteogenic functions, EGCG also has great potential in the modification of tissue engineering materials for bone defect repair. This article reviews the mechanism by which EGCG participates in stem cell proliferation and osteogenic differentiation, and summarises its advantages as a tissue engineering material. This paper provides a theoretical basis for the use of EGCG as periodontitis adjuvant therapy and bone tissue engineering material.

Key words: epigallocatechin-3-gallate, proliferation, osteogenesis, tissue engineering

CLC Number: 

  • Q254

TrendMD: 

Fig 1

The structure of EGCG"

[1] Kinane DF, Stathopoulou PG, Papapanou PN . Periodontal diseases[J]. Nat Rev Dis Primers, 2017,3:17038.
[2] Bassir SH, Wisitrasameewong W, Raanan J , et al. Potential for stem cell-based periodontal therapy[J]. J Cell Physiol, 2016,231(1):50-61.
[3] 王婷婷, 万乾炳 . 骨髓干细胞应用于牙槽骨修复的展望[J]. 国际口腔医学杂志, 2008,35(S1):1-4.
Wang TT, Wan BQ . Prospect of the mesenchymal stem cell applicated in alveolar bone reparation[J]. Int J Stomatol, 2008,35(S1):1-4.
[4] Zhang ZF, Yang JL, Jiang HC , et al. Updated association of tea consumption and bone mineral density: a meta-analysis[J]. Medicine (Baltimore), 2017,96(12):e6437.
[5] Chopra A, Thomas BS, Sivaraman K , et al. Green tea intake as an adjunct to mechanical periodontal therapy for the management of mild to moderate chronic periodontitis: a randomized controlled clinicaltrial[J]. Oral Health Prev Dent, 2016,14(4):293-303.
[6] Morin MP, Grenier D . Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts[J]. Arch Oral Biol, 2017,75:89-99.
[7] Tominari T, Ichimaru R, Yoshinouchi S , et al. Effects of O-methylated (-)-epigallocatechin gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice[J]. FEBS Open Bio, 2017,7(12):1972-1981.
[8] Lee BS, Lee CC, Lin HP , et al. A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs[J]. Carbohydr Polym, 2016,151:790-802.
[9] Tominari T, Matsumoto C, Watanabe K , et al. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice[J]. FEBS Open Bio, 2015,5:522-527.
[10] Yagi H, Tan J, Tuan RS . Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells[J]. J Cell Biochem, 2013,114(5):1163-1173.
doi: 10.1002/jcb.24459
[11] Chakrawarti L, Agrawal R, Dang S , et al. Therapeutic effects of EGCG: a patent review[J]. Expert Opin Ther Pat, 2016,26(8):907-916.
[12] Cai YZ, Mei Sun, Jie Xing , et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants[J]. Life Sci, 2006,78(25):2872-2888.
[13] Inaba H, Tagashira M, Kanda T , et al. Apple- and Hop-polyphenols inhibit Porphyromonas gingivalis-mediated precursor of matrix metalloproteinase-9 activation and invasion of oral squamous cell carcinoma cells[J]. J Periodontol, 2016,87(9):1103-1111.
[14] Jin P, Li M, Xu G , et al. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: an enhancer or an inducer[j]. Exp Ther Med, 2015,10(2):828-834.
[15] Liu W, Fan JB, Xu DW , et al. Epigallocatechin-3-gallate protects against tumor necrosis factor alpha induced inhibition of osteogenesis of mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2016,241(6):658-666.
[16] Kaida K, Honda Y, Hashimoto Y , et al. Application of green tea catechin for inducing the osteogenic differentiation of human dedifferentiated fat cells in vitro[J]. Int J Mol Sci, 2015,16(12):27988-28000.
[17] Chen CH, Ho ML, Chang JK , et al. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line[J]. Osteoporos Int, 2005,16(12):2039-2045.
[18] Kim HS, Quon MJ, Kim JA . New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate[J]. Redox Biol, 2014,2:187-195.
[19] Li Y, Zhao S, Zhang W , et al. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J]. Diabetes Res Clin Pract, 2011,93(2):205-214.
[20] Wei Y, Chen P, Ling T , et al. Certain (-)-epigalloca-techin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG[J]. Food Chem, 2016,204:218-226.
[21] Chen CH, Kang L, Lin RW , et al.( -)-Epigallocate-chin-3-gallate improves bone microarchitecture in ovariectomized rats[J]. Menopause, 2013,20(6):687-694.
doi: 10.1097/gme.0b013e31828244f0
[22] Cho AR, Kim JH, Lee DE , et al. The effect of orally administered epigallocatechin-3-gallate on ligature-induced periodontitis in rats[J]. J Periodontal Res, 2013,48(6):781-789.
[23] Kanzaki H, Shinohara F, Itohiya-Kasuya K , et al. Nrf2 activation attenuates both orthodontic tooth movement and relapse[J]. J Dent Res, 2015,94(6):787-794.
[24] Aubin JE . Advances in the osteoblast lineage[J]. Biochem Cell Biol, 1998,76(6):899-910.
[25] Chen CH, Ho ML, Chang JK , et al. Green tea catechins enhance the expression of osteoprotegerin (OPG) in pluripotent stem cells[J]. J Orthop Surg Taiwan, 2003,20(4):178-183.
[26] Jin P, Wu H, Xu G , et al. Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study[J]. Cell Tissue Res, 2014,356(2):381-390.
doi: 10.1007/s00441-014-1797-9
[27] Schroeder TM, Jensen ED, Westendorf JJ . Runx2: a master organizer of gene transcription in developing and maturing osteoblasts[J]. Birth Defects Res C Embryo Today, 2005,75(3):213-225.
[28] Liu W, Toyosawa S, Furuichi T , et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001,155(1):157-166.
[29] Vali B, Rao LG, El-Sohemy A . Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells[J]. J Nutr Biochem, 2007,18(5):341-347.
doi: 10.1016/j.jnutbio.2006.06.005
[30] Kamon M, Zhao R, Sakamoto K . Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells[J]. Cell Biol Int, 2009,34(1):109-116.
[31] Sakai G, Otsuka T, Fujita K , et al. Amplification by (-)-epigallocatechin gallate of prostaglandin F2α- stimulated synjournal of osteoprotegerin in osteoblasts[J]. Mol Med Rep, 2017,16(5):6376-6381.
[32] Varela-López A, Ochoa JJ, Llamas-Elvira JM , et al. Loss of bone mineral density associated with age in male rats fed on sunflower oil is avoided by virgin olive oil intake or coenzyme Q supplementation[J]. Int J Mol Sci, 2017,18(7). doi: 10.3390/ijms18071397.
[33] Atashi F, Modarressi A, Pepper MS . The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review[J]. Stem Cells Dev, 2015,24(10):1150-1163.
[34] Legeay S, Rodier M, Fillon L , et al. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome[J]. Nutrients, 2015,7(7):5443-5468.
[35] Tachibana H, Koga K, Fujimura Y , et al. A receptor for green tea polyphenol EGCG[J]. Nat Struct Mol Biol, 2004,11(4):380-381.
[36] Li YF, Wang H, Fan Y , et al. Epigallocatechin-3-gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-kDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages[J]. Cell Physiol Biochem, 2017,43(3):926-936.
[37] Lerner UH, Ohlsson C . The WNT system: background and its role in bone[J]. J Intern Med, 2015,277(6):630-649.
[38] Wang D, Wang Y, Xu S , et al. Epigallocatechin-3-gallate protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Stem Cells Int, 2016,2016:7532798.
[39] Huang CH, Tseng WY, Yao CC , et al. Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type Ⅰ receptor[J]. J Cell Physiol, 2010,225(1):140-151.
[40] Liu XD, Cai F, Liu L , et al. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation[J]. Biol Chem, 2015,396(4):339-347.
[41] Qiu Y, Chen Y, Zeng T , et al. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210[J]. Mol Biol Rep, 2016,43(3):183-193.
[42] Honda Y, Tanaka T, Tokuda T , et al. Local controlled release of polyphenol conjugated with gelatin facilitates bone formation[J]. Int J Mol Sci, 2015,16(6):14143-14157.
[43] Rodriguez R, Kondo H, Nyan M , et al. Implantation of green tea catechin α-tricalcium phosphate combination enhances bone repair in rat skull defects[J]. J Biomed Mater Res B Appl Biomater, 2011,98(2):263-271.
[44] Chu C, Deng J, Xiang L , et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394.
[45] Chu C, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36.
[46] Chu C, Deng J, Man Y , et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264.
[47] Mah YJ, Song JS, Kim SO , et al. The effect of epigallocatechin-3-gallate (EGCG) on human alveolar bone cells both in vitro and in vivo[J]. Arch Oral Biol, 2014,59(5):539-549.
doi: 10.1016/j.archoralbio.2014.02.011
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[3] Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352.
[4] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[5] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[6] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[7] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[8] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[9] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[10] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[11] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[12] Liu Enyan,Li Mingyun. Research progress on tea polyphenols in dentin adhesion [J]. Int J Stomatol, 2020, 47(6): 732-738.
[13] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[14] Li Huili,Fang Changyun,Su Zheng. Effects of arecoline on proliferation and migration of human buccal mucosal fibroblasts in vitro [J]. Int J Stomatol, 2020, 47(1): 32-36.
[15] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .