Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (3): 249-254.doi: 10.7518/gjkq.2018.03.001

• Expert Forum •     Next Articles

Research progress on application of DNA origami in stem cell field

Lin Yunfeng, Li Songhang   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-01-14 Revised:2018-03-16 Online:2018-05-01 Published:2018-05-01

Abstract: DNA origami is a newly proposed DNA self-assembly method in recent years. It can design specific DNA sequences and follow the principle of complementary base pairing to construct more complex nanostructures and nanopatterns. The recent discovery of tetrahedral DNA nanostructure (TDN) constructed by DNA origami has great application potential in the field of stem cells. In this study, we reviewed the structure and biological properties of TDN, and the applications of TDN in the field of stem cells.

Key words: DNA nanostructure, tetrahedral DNA nanostructure, stem cell, differentiation, tissue regeneration

CLC Number: 

  • Q75

TrendMD: 
[1] Zhang Y, Tu J, Wang D, et al.Programmable and multifunctional DNA-based materials for biomedical applications[J]. Adv Mater, 2018. doi:10.1002/adma.201703658.
[2] Pei H, Zuo X, Zhu D, et al.Functional DNA nanos-tructures for theranostic applications[J]. Acc Chem Res, 2014, 47(2):550-559.
[3] Hu Y, Cecconello A, Idili A, et al.Triplex DNA nanostructures: from basic properties to applications[J]. Angew Chem Int Ed Engl, 2017, 56(48):15210-15233.
[4] Liang L, Li J, Li Q, et al.Single-particle tracking and modulation of cell entry pathways of a tetrahe-dral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30):7745-7750.
[5] Dong S, Zhao R, Zhu J, et al.Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus[J]. ACS Appl Mater Interfaces, 2015, 7(16):8834-8842.
[6] Peng Q, Shao XR, Xie J, et al.Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J]. ACS Appl Mater Interfaces, 2016, 8(20):12733-12739.
[7] Shi S, Lin S, Li Y, et al.Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes[J]. Chem Commun (Camb), 2018, 54(11):1327-1330.
[8] Li Q, Zhao D, Shao X, et al.Aptamer-modified te-trahedral DNA nanostructure for tumor-targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9(42): 36695-36701.
[9] Shao X, Lin S, Peng Q, et al.DNA Nanostructures: tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chon-drocyte phenotype and proliferation (small 12/2017)[J]. Small, 2017, 13(12). doi:10.1002/smll.01602770.
[10] Xie X, Shao X, Ma W, et al.Overcoming drug-resis-tant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018. doi:10.1002/adma.201703658.
[11] Jiang D, Sun Y, Li J, et al.Multiple-armed tetrahedral DNA nanostructures for tumortargeting, dualmoda-lity in vivo imaging[J]. ACS Appl Mater Interfaces, 2016, 8(7):4378-4384.
[12] Li J, Pei H, Zhu B, et al.Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleo-tides[J]. ACS Nano, 2011, 5(11):8783-8789.
[13] Petkar KC, Chavhan SS, Agatonovik-Kustrin S, et al.Nanostructured materials in drug and gene delivery: a review of the state of the art[J]. Crit Rev Ther Drug Carrier Syst, 2011, 28(2):101-164.
[14] Tian T, Zhang T, Zhou T, et al.Synthesis of an ethy-leneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle[J]. Nanoscale, 2017, 9(46):18402-18412.
[15] Zhang Q, Lin S, Shi S, et al.Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostruc-tures via the modulation of macrophage responses[J]. ACS Appl Mater Interfaces, 2018, 10(4):3421-3430.
[16] Dey D, Chaskar S, Athavale N, et al.Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238[J]. Phytother Res, 2014, 28(10):1479-1485.
[17] Shi S, Peng Q, Shao X, et al.Self-assembled tetrahe-dral DNA nanostructures promote adiposederived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30):19353-19363.
[18] Riera KM, Rothfusz NE, Wilusz RE, et al.Interleu-kin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migra-tion[J]. Arthritis Res Ther, 2011, 13(6):R187.
[19] He Z, Hua J, Song Z.Concise review: mesenchymal stem cells ameliorate tissue injury via secretion of tumor necrosis factor-α stimulated protein/gene 6[J]. Stem Cells Int, 2014, 2014:761091.
[20] Lee TS, Lin JJ, Huo YN, et al.Progesterone inhibits endothelial cell migration through suppression of the Rho activity mediated by cSrc activation[J]. J Cell Biochem, 2015, 116(7):1411-1418.
[21] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4):483-495.
[22] Lin MN, Shang DS, Sun W, et al.Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells thr-ough human brain microvascular endothelial cell monolayers[J]. Brain Res, 2013, 1513:1-8.
[23] Habets GG, Scholtes EH, Zuydgeest D, et al.Identi-fication of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP ex-changers for Rho-like proteins[J]. Cell, 1994, 77(4): 537-549.
[24] Liu C, Zhu C, Li J, et al.The effect of the fibre orien-tation of electrospun scaffolds on the matrix produc-tion of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3:15012.
[25] Ahmadzadeh A, Norozi F, Shahrabi S, et al.Wnt/β- catenin signaling in bone marrow niche[J]. Cell Tissue Res, 2016, 363(2):321-335.
[26] MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12). doi:10.1101/cshperspect.a007880.
[27] Zhang F, Luo K, Rong Z, et al.Periostin upregulates Wnt/β-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchy-mal stem cells[J]. Sci Rep, 2017, 7:41634.
[28] Ma W, Shao X, Zhao D, et al.Self-assembled te-trahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9):7892-7900.
[29] Kim SU, Lee HJ, Kim YB.Neural stem cell-based treatment for neurodegenerative diseases[J]. Neuro-pathology, 2013, 33(5):491-504.
[30] Wong CT, Ahmad E, Li H, et al.Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders[J]. Cell Commun Signal, 2014, 12:19.
[31] Lunn JS, Sakowski SA, Hur J, et al.Stem cell te-chnology for neurodegenerative diseases[J]. Ann Neurol, 2011, 70(3):353-361.
[32] Zhong J, Guo B, Xie J, et al.Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4:15036.
[33] Xue C, Xie J, Zhao D, et al.The JAK/STAT3 signal-ling pathway regulated angiogenesis in an endothe-lial cell/adipose-derived stromal cell co-culture, 3D gel model[J]. Cell Prolif, 2017, 50(1). doi:10.1111/cpr.12307.
[34] Liu N, Zhou M, Zhang Q, et al.Stiffness regulates the proliferation and osteogenic/odontogenic dif-ferentiation of human dental pulp stem cells via the WNT signalling pathway[J]. Cell Prolif, 2018. doi: 10.1111/cpr.12435.
[35] Zhou M, Liu NX, Shi SR, et al.Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway[J]. Nanomedicine, 2018. doi:10.1016/j.nano.2018.02.004.
[36] Manokawinchoke J, Nattasit P, Thongngam T, et al.Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differen- tiation in human dental pulp cells[J]. Sci Rep, 2017, 7(1):10124.
[37] Sohn S, Park Y, Srikanth S, et al.The role of ORAI1 in the odontogenic differentiation of human dental pulp stem cells[J]. J Dent Res, 2015, 94(11):1560-1567.
[38] Charoenphol P, Bermudez H.Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5):1721-1725.
[39] Lee H, Lytton-Jean AK, Chen Y, et al.Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6):389-393.
[40] Kim KR, Kim HY, Lee YD, et al.Self-assembled mirror DNA nanostructures for tumor-specific de-livery of anticancer drugs[J]. J Control Release, 2016, 243:121-131.
[41] Tasciotti E.Smart cancer therapy with DNA origami[J]. Nat Biotechnol, 2018, 36(3):234-235.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[3] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[4] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[5] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[6] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[8] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[9] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[10] Li Pei,Lin Ling,Zhao Wei.. Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue [J]. Int J Stomatol, 2022, 49(4): 483-488.
[11] Cai Yunzhu,Zhu Shu,Liu Yao,Chen Xu.. Research progress on dental stem cells in the treatment of nervous system diseases [J]. Int J Stomatol, 2022, 49(3): 255-262.
[12] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[13] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[14] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[15] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .