Inter J Stomatol ›› 2015, Vol. 42 ›› Issue (3): 334-338.doi: 10.7518/gjkq.2015.03.021

Previous Articles     Next Articles

Effect of phosphatase and tensin homolog gene deleted on chromosome 10 in oral squamous cell carcinoma

Zeng Suyun, Wang Jianguang   

  1. Dept. of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2014-08-15 Revised:2015-01-15 Online:2015-05-01 Published:2015-05-01

Abstract:

Phosphatase and tensin homolog gene deleted on chromosome 10(PTEN) plays an essential role not only in cell cycle regulation, limiting cell growth, and proliferation, but also in cell migration regulation, adhesion, and maintenance of the stability of the immune system through the signal transduction pathway. The PTEN gene may not undergo mutation and deletion during the development of oral squamous cell carcinoma(OSCC) but may be specifically related to the reduction of the PTEN mRNA expression level. The PTEN protein exhibits decreased expression in different histological types of specimens, ranging from healthy oral mucosa and oral submucous fibrosis(OSF) to OSCC. This event is important in the pathogenesis and malignant transformation mechanism of OSF. The expression of the PTEN protein is related to the histological and biological behavior of OSCC and can be used as a prognostic indicator of OSCC. The low expression of the PTEN protein caused by different factors may cause difficulty in performing its role on coordination of cell cycle, control of programmed cell death and cell adhesion, inhibition of metastasis and proliferation of cancer cells.

Key words: oral squamous cell carcinoma, precancerous lesion, phosphatase and tensin homology gene deleted on chromosome ten, expression, regulation, signal transduction mechanism

CLC Number: 

  • Q 786

TrendMD: 
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[3] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[4] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[5] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[6] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[7] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[8] Zhao Manzhu,Song Jinlin. Research progress on expression distribution and regulation mechanism of clock genes in tooth development [J]. Int J Stomatol, 2022, 49(4): 380-385.
[9] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[10] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
[11] Jiang Yulei,Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao. Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment [J]. Int J Stomatol, 2021, 48(6): 711-717.
[12] Gan Jianguo,Gao Pan,Wang Xiaoyi. Research progress on the relationship between circulating tumor cells and oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(2): 205-212.
[13] Huang Junwen,Qiao Jie,Mei Zi,Chen Zhuo,Li Yang,Qiao Bin. Expression and clinical significance of lipopolysaccharide binding protein in oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(1): 50-57.
[14] He Yuqing,Dan Hongxia,Chen Qianming. Application of photodynamic therapy for oral carcinogenesis prevention [J]. Int J Stomatol, 2020, 47(6): 669-676.
[15] Kong Lixin,Ren Biao,Cheng Lei. Research progress on regulation of cyclooxygenase-2/prostaglandin E2 pathway on oral cancer [J]. Int J Stomatol, 2020, 47(4): 431-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .