Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 176-188.doi: 10.7518/gjkq.2026113

• Original Articles • Previous Articles    

Low-level laser therapy for hyperglycemia-associated inflammatory senescence in macrophages

Pawuziya Abulizi(),Haonan Zou,Hao Dong,Aimin Cui,Yuezhang Sun,Qi Wang()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2025-04-16 Revised:2025-10-28 Online:2026-03-01 Published:2026-02-13
  • Contact: Qi Wang E-mail:798546679@qq.com;wqinno8751@gmail.com
  • Supported by:
    National Natural Science Foundation of China(82470985);Natural Science Foundation of Sichuan Pro-vince(2024NSFSC0548)

Abstract:

Objective Hyperglycemia-associated inflammatory senescence in macrophages is a key factor in inducing macrophage dysfunction and periodontal tissue damage. This study aims to explore the regulatory effects of low-level laser therapy (LLLT) on this process. Methods Bone marrow-derived macrophages (iBMDMs) cultured in a glucose-shift medium were subjected to laser treatments for evaluation in terms of phagocytosis, migration, and inflammatory senescence levels. Meanwhile, a diabetic mouse model was constructed to compare the effects of insulin monotherapy, LLLT monotherapy, and insulin-combined LLLT on the morphology and inflammatory senescence phenotype of periodontal tissues. Results LLLT enhanced cell migration and phagocytosis in iBMDMs, as well as reduced the expression of inflammatory senescence markers. In the in vivo experiments, LLLT combined with insulin treatment alleviated diabetes-induced gingival mucosal epithelial thickening, disordered stratification, shortened epithelial rete pegs, and alveolar bone resorption. Meanwhile, it reduced the inflammatory senescence burden. Conclusion LLLT effectively reverses hyperglycemia-associated sustained damage to macrophages and periodontal tissues. Thus, it shows strong potential as an effective adjuvant therapy for maintaining oral health in diabetic patients.

Key words: low-level laser therapy, macrophage, diabetes, inflammatory senescence

CLC Number: 

  • R616

TrendMD: 

Fig 1

Micro-CT analysis of alveolar bone levels and bone volume fraction"

Fig 2

HE staining of gingival tissue"

Fig 3

Immunostaining to assess periodontal inflammatory senescence level"

Fig 4

The impact of different energy lasers on cell viability"

Fig 5

The effect of laser on cell migration ability under normal glucose conditions"

Fig 6

Transwell assay for macrophage migration ability"

Fig 7

Fluorescence beads phagocytosis assay for measuring macrophage phagocytic capacity"

Fig 8

SA-β-GAL staining for cellular senescence"

Fig 9

WB analysis of the expression of inflammatory senescence associated proteins in macrophages"

[1] Andonian BJ, Hippensteel JA, Abuabara K, et al. Inflammation and aging-related disease: a transdisciplinary inflammaging framework[J]. Geroscience, 2025, 47(1): 515-542.
[2] Franceschi C, Bonafè M, Valensin S, et al. Inflam-maging. An evolutionary perspective on immunosenescence[J]. Ann N Y Acad Sci, 2000, 908: 244-254.
[3] Zhao PF, Yue ZQ, Nie L, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates perio-dontal inflamm-aging[J]. J Clin Periodontol, 2021, 48(10): 1379-1392.
[4] Teeuw WJ, Kosho MXF, Poland DCW, et al. Pe-riodontitis as a possible early sign of diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2017, 5(1): e000326.
[5] 张鹏, 丁一, 王琪. 炎性衰老在糖尿病牙周炎中的作用机制及研究现状[J].国际口腔医学杂志, 2017, 44(6): 664-668.
Zhang P, Ding Y, Wang Q. Research on the role of inflammaging in diabetes mellitus-associated perio-dontitis[J]. Int J Stomatol, 2017, 44(6): 664-668.
[6] Berni M, Brancato AM, Torriani C, et al. The role of low-level laser therapy in bone healing: systematic review[J]. Int J Mol Sci, 2023, 24(8): 7094.
[7] Maia LGM, Alves AVF, Bastos TS, et al. Histological analysis of the periodontal ligament and alveolar bone during dental movement in diabetic rats subjected to low-level laser therapy[J]. J Photochem Photobiol B, 2014, 135: 65-74.
[8] Zou QR, Zhang SX, Jiang CW, et al. Low-level laser therapy on soft tissue healing after implantation: a randomized controlled trial[J]. BMC Oral Health, 2024, 24(1): 1477.
[9] Arany PR. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges[J]. J Dent Res, 2016, 95(9): 977-984.
[10] Assery N, Alomeir N, Zeng Y, et al. The effect of Er: YAG laser treatment on biofilm formation on titanium and zirconia disc surfaces[J]. J Periodontol, 2023, 94(3): 344-353.
[11] 张敏, 万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
Zhang M, Wan HY. Research progress on drug and laser therapy for peri-implantitis[J]. Int J Stomatol, 2020, 47(4): 463-470.
[12] Amaroli A, Colombo E, Zekiy A, et al. Interaction between laser light and osteoblasts: photobiomodulation as a trend in the management of socket bone preservation-a review[J]. Biology (Basel), 2020, 9(11): 409.
[13] Dalirsani Z, Ghazi N, Delavarian Z, et al. Effects of diode low-level laser therapy on healing of tooth extraction sockets: a histopathological study in diabe-tic rats[J]. Lasers Med Sci, 2021, 36(7): 1527-1534.
[14] Zhang YF, Tang PZ, Yang Q, et al. Efficacy of sca-ling and root planing with and without adjunct Nd: YAG laser therapy on glucose control and periodontal microecological imbalance in periodontitis patients with type 2 diabetes mellitus: a randomized controlled trial[J]. Clin Oral Investig, 2024, 28(2): 143.
[15] Saydjari Y, Kuypers T, Gutknecht N. Laser application in dentistry: irradiation effects of Nd: YAG 1064 nm and diode 810 nm and 980 nm in infected root canals-a literature overview[J]. Biomed Res Int, 2016, 2016: 8421656.
[16] 陈敬儒, 李凤丹, 江银华. 光生物调节疗法治疗放射性口腔黏膜炎作用机制研究进展[J]. 口腔医学, 2023, 43(12): 1134-1139.
Chen JR, Li FD, Jiang YH. Research progress on the mechanism of action of photobiomodulation the-rapy in the treatment of radiation-induced oral mucositis[J]. Stomatology, 2023, 43(12): 1134-1139.
[17] 李儒, 李泽慧, 郑明和, 等. 光生物调节疗法治疗口腔黏膜病的相关机制[J]. 激光生物学报, 2023, 32(5): 403-413.
Li R, Li ZH, Zheng MH, et al. Mechanism of photobiomodulation therapy in the treatment of oral mucosal diseases[J]. Acta Las Biol Sin, 2023, 32(5): 403-413.
[18] Ibarra AMC, Biasotto-Gonzalez DA, Kohatsu EYI, et al. Photobiomodulation on trigeminal neuralgia: systematic review[J]. Lasers Med Sci, 2021, 36(4): 715-722.
[19] 肖诗梦, 刘翼, 李茂雪, 等. 激光辅助伴2型糖尿病牙周炎非手术治疗的疗效评价[J]. 口腔医学, 2024, 44(3): 161-167.
Xiao SM, Liu Y, Li MX, et al. Evaluation of the efficacy of laser-assisted non-surgical treatment of pe-riodontitis with type 2 diabetes mellitus[J]. Stomatology, 2024, 44(3): 161-167.
[20] Cui AM, Sun YZ, Zhu KJ, et al. Low-level laser therapy alleviates periodontal age-related inflammation in diabetic mice via the GLUT1/mTOR pathway[J]. Lasers Med Sci, 2024, 39(1): 36.
[21] Nie L, Zhao PF, Yue ZQ, et al. Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis[J]. J Leukoc Biol, 2021, 110(3): 497-510.
[22] Ren C, McGrath C, Jin L, et al. The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: a meta-analysis[J]. J Perio-dontal Res, 2017, 52(1): 8-20.
[23] Jiang YY, Feng J, Du J, et al. Clinical and biochemical effect of laser as an adjunct to non-surgical treatment of chronic periodontitis[J]. Oral Dis, 2022, 28(4): 1042-1057.
[24] 王佳岱, 张璇, 林莉. 牙周炎症微环境对牙龈上皮屏障影响研究进展[J]. 中国实用口腔科杂志, 2021, 14(2): 229-233.
Wang JD, Zhang X, Lin L. Research progress in the influence of periodontal inflammation microenvironment on gingival epithelial barrier[J]. Chin J Pract Stomatol, 2021, 14(2): 229-233.
[25] Zhou XY, Yang XY, Huang SZ, et al. Inhibition of METTL3 alleviates NLRP3 inflammasome activation via increasing ubiquitination of NEK7[J]. Adv Sci (Weinh), 2024, 11(26): e2308786.
[26] 王志勇, 陈谦明. 牙周稳态维持与失衡中的区域免疫机制[J]. 中华口腔医学杂志, 2024, 59(2): 130-137.
Wang ZY, Chen QM. Regional immune mechanisms in the maintenance and imbalance of perio-dontal homeostasis[J]. Chin J Stomatol, 2024, 59(2): 130-137.
[27] Dağ A, Fırat ET, Uysal E, et al. Morphological changes caused by streptozotocin-induced diabetes in the healthy gingiva of rats[J]. Exp Clin Endocrinol Diabetes, 2016, 124(3): 167-172.
[28] 孙乐章, 王琪. 高糖水平下牙周组织的形态与免疫特征[J]. 口腔医学, 2023, 43(2): 153-158.
Sun YZ, Wang Q. Morphological and immune cha-racteristics of periodontal tissues under hyperglycemia[J]. Stomatology, 2023, 43(2): 153-158.
[29] Koçak E, Sağlam M, Kayış SA, et al. Nonsurgical periodontal therapy with/without diode laser modulates metabolic control of type 2 diabetics with pe-riodontitis: a randomized clinical trial[J]. Lasers Med Sci, 2016, 31(2): 343-353.
[30] Cláudio MM, Nuernberg MAA, Rodrigues JVS, et al. Effects of multiple sessions of antimicrobial photodynamic therapy (aPDT) in the treatment of pe-riodontitis in patients with uncompensated type 2 diabetes: a randomized controlled clinical study[J]. Photodiagnosis Photodyn Ther, 2021, 35: 102451.
[31] Chandra S, Shashikumar P. Diode laser-a novel therapeutic approach in the treatment of chronic pe-riodontitis in type 2 diabetes mellitus patients: a prospective randomized controlled clinical trial[J]. J Lasers Med Sci, 2019, 10(1): 56-63.
[32] Dengizek Eltas S, Gursel M, Eltas A, et al. Evaluation of long-term effects of diode laser application in periodontal treatment of poorly controlled type 2 diabetic patients with chronic periodontitis[J]. Int J Dent Hyg, 2019, 17(4): 292-299.
[33] Barbosa FI, Araújo PV, Machado LJC, et al. Effect of photodynamic therapy as an adjuvant to non-surgical periodontal therapy: periodontal and metabolic evaluation in patients with type 2 diabetes mellitus[J]. Photodiagnosis Photodyn Ther, 2018, 22: 245-250.
[34] Glass GE. Photobiomodulation: the clinical applications of low-level light therapy[J]. Aesthet Surg J, 2021, 41(6): 723-738.
[35] Golovynska I, Stepanov YV, Golovynskyi S, et al. Macrophages modulated by red/NIR light: phagocytosis, cytokines, mitochondrial activity, Ca2+ influx, membrane depolarization and viability[J]. Photochem Photobiol, 2022, 98(2): 484-497.
[36] de C Monteiro JS, Pinheiro AN, de Oliveira SCPS, et al. Influence of laser phototherapy (λ660 nm) on the outcome of oral chemical carcinogenesis on the hamster cheek pouch model: histological study[J]. Photomed Laser Surg, 2011, 29(11): 741-745.
[37] de Pauli Paglioni M, Araújo ALD, Arboleda LPA, et al. Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review[J]. Oral Oncol, 2019, 93: 21-28.
[38] Kang M, Lee Y, Lee YR, et al. Wavelength-dependent photobiomodulation (PBM) for proliferation and angiogenesis of melanoma tumor in vitro and in vivo [J]. J Photochem Photobiol B, 2024, 258: 112990.
[39] Kim H, Kim Y, Kim TH, et al. Stimulatory effects of wavelength-dependent photobiomodulation on proliferation and angiogenesis of colorectal cancer[J]. J Photochem Photobiol B, 2022, 234: 112527.
[40] de Souza Contatori CG, Silva CR, de Toledo Pereira S, et al. Responses of melanoma cells to photobiomodulation depend on cell pigmentation and light parameters[J]. J Photochem Photobiol B, 2022, 235: 112567.
[41] Wang Q, Nie L, Zhao PF, et al. Diabetes fuels pe-riodontal lesions via GLUT1-driven macrophage inflammaging[J]. Int J Oral Sci, 2021, 13(1): 11.
[42] Sun YZ, Cui AM, Dong H, et al. Intermittent hyperglycaemia induces macrophage dysfunction by extracellular regulated protein kinase-dependent PKM-2 translocation in periodontitis[J]. Cell Prolif, 2024, 57(10): e13651.
[43] Li B, Xin ZL, Gao SY, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis[J]. The-ranostics, 2023, 13(1): 231-249.
[1] Zekai Xu,Wenzhi Wu,Zhuo Chen. Progress in the study of cellular interactions between dental pulp mesenchymal stem cells and macrophages [J]. Int J Stomatol, 2026, 53(1): 36-42.
[2] Yuzhi Li,Xu Su,Xiaotao Chen,Yong Zhang. Progress in research on the relationship between diabetes mellitus and endodontic periapical disease [J]. Int J Stomatol, 2025, 52(3): 397-404.
[3] Xinlu Dong,Laijun Xu,Jianying Zhang,Minmin Chen. Progress in research on the correlation of inflammatory pulpal and periapical disease to diabetes mellitus and rela-ted mechanisms [J]. Int J Stomatol, 2025, 52(2): 231-237.
[4] Rui Chen,Zhen Fan,Chunbo Hao. Research progress of absent in melanoma 2 inflammasome in periodontitis and diabetes [J]. Int J Stomatol, 2024, 51(6): 763-771.
[5] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[6] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[7] Yi Zumu,Wang Xinyu,Wu Yingying. Bacterial diversity of oral flora in patients with diabetes [J]. Int J Stomatol, 2020, 47(5): 522-529.
[8] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[9] Liu Ye,Hong Rundan,Wang Zhiguo,Liu Hanyun,Meng Chenda,Wang Ru,Xu Quanchen. Comparison of polarization characteristics of human monocyte cell- and peripheral blood mononuclear cell-derived macrophages [J]. Int J Stomatol, 2020, 47(3): 286-292.
[10] Pengfei Zhao,Qi Wang. Research progress on the etiology and therapy of bone defect during dental implantation under diabetic condition [J]. Inter J Stomatol, 2019, 46(2): 244-248.
[11] Wei Li,Xiaolin. Nong. Effect and mechanism of diabetes on saliva secretion and salivary glands [J]. Inter J Stomatol, 2018, 45(5): 579-583.
[12] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[13] Lin Dongjia, Peng Zhixiang, Gao Yan.. Progress in the interactive mechanism between Enterococcus faecalis and macrophages [J]. Inter J Stomatol, 2018, 45(4): 433-438.
[14] Liu Caiyun, Tao Yiran. Correlation between taste injury and diabetes [J]. Inter J Stomatol, 2018, 45(3): 358-361.
[15] Xiong Yi, Gong Ping, Wu Yingying. Establishment of diabetic mouse model with conditional knockout of FoxO1 in osteoblasts [J]. Inter J Stomatol, 2018, 45(2): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!