Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (6): 640-645.doi: 10.7518/gjkq.2018.06.004

• RNA Research • Previous Articles     Next Articles

Mechanism of microRNA modulation of cartilage differentiation in mesenchymal stem cells

Dingli Feng1,2,Lidan Zhuo2,Di Lu3,Hongyan Guo2()   

  1. 1. School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
    2. Dept. of Oral Medicine, Beijing Armed Police General Hospital, Beijing 100039, China
    3. Dept. of Orthopedics and Rehabilitation, General Hospital of PLA, Beijing 100853, China
  • Received:2017-12-05 Revised:2018-06-06 Online:2018-11-01 Published:2018-11-15
  • Contact: Hongyan Guo E-mail:ghyfmmu@126.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81571619);National Key Research and Development Plan(2016YFE0204400)

Abstract:

microRNAs (miRNAs) regulate gene expression at the post-transcriptional level mainly through incomplete base-pairing. There are many different miRNA expressions in mesenchymal stem cells during the process of differentiation, and such expressions play an important role in the regulation of cartilage differentiation. In recent years, the possibility of miRNA becoming a target for the treatment of cartilage diseases has prompted researchers to investigate the role of miRNAs in the development of cartilage. In this paper, we review the expression of miRNAs during differentiation of mesenchymal stem cell cartilage and the specific roles of miRNAs in the process of cartilage differentiation.

Key words: microRNA, mesenchymal stem cell, cartilage differentiation, target gene

CLC Number: 

  • Q254

TrendMD: 
[1] Gobbi A, Karnatzikos G, Sankineani SR . One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee[J]. Am J Sports Med, 2014,42(3):648-657.
doi: 10.1177/0363546513518007 pmid: 24458240
[2] Bernhard JC, Vunjak-Novakovic G . Should we use cells, biomaterials, or tissue engineering for cartilage regeneration[J]. Stem Cell Res Ther, 2016,7:56.
doi: 10.1186/s13287-016-0314-3 pmid: 4836146
[3] Ham O, Lee CY, Kim R , et al. Therapeutic potential of differentiated mesenchymal stem cells for treat-ment of osteoarthritis[J]. Int J Mol Sci, 2015,16(7):14961-14978.
doi: 10.3390/ijms160714961 pmid: 4519882
[4] Carthew RW, Sontheimer EJ . Origins and Mechanisms of miRNAs and siRNAs[J]. Cell, 2009,136(4):642-655.
doi: 10.1016/j.cell.2009.01.035 pmid: 2675692
[5] Yang B, Guo HF, Zhang YL , et al. The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation[J]. BMB Rep, 2011,44(1):28-33.
doi: 10.5483/BMBRep.2011.44.1.28 pmid: 21266103
[6] Zhang Z, Kang Y, Zhang Z , et al. Expression of microRNAs during chondrogenesis of human adi-pose-derived stem cells[J]. Osteoarthr Cartil, 2012,20(12):1638-1646.
doi: 10.1016/j.joca.2012.08.024 pmid: 22947280
[7] Yang Z, Hao J, Hu ZM . MicroRNA expression pro-files in human adipose-derived stem cells during chondrogenic differentiation[J]. Int J Mol Med, 2015,35(3):579-586.
doi: 10.3892/ijmm.2014.2051 pmid: 25543998
[8] Akiyama H . Control of chondrogenesis by the trans-cription factor Sox9[J]. Mod Rheumatol, 2008,18(3):213-219.
doi: 10.3109/s10165-008-0048-x pmid: 18351289
[9] Han Y, Lefebvre V . L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008,28(16):4999-5013.
doi: 10.1128/MCB.00695-08
[10] Yang B, Guo HF, Zhang YL , et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchy-mal stem cells by targeting Sox9[J]. PLoS One, 2011,6(7):e21679.
doi: 10.1371/journal.pone.0021679 pmid: 21799743
[11] Martinez-Sanchez A, Dudek KA, Murphy CL . Re-gulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145)[J]. J Biol Chem, 2012,287(2):916-924.
doi: 10.1074/jbc.M111.302430 pmid: 22102413
[12] Lee S, Yoon DS, Paik S , et al. Microrna-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014,23(15):1798-1808.
doi: 10.1089/scd.2013.0609 pmid: 24654627
[13] Lin X, Wu L, Zhang ZM , et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops[J]. J Bone Miner Res, 2014,29(7):1575-1585.
doi: 10.1002/jbmr.2163 pmid: 24347469
[14] Guérit D, Philipot D, Chuchana P , et al. Sox9-regula-ted miRNA-574-3p inhibits chondrogenic differen-tiation of mesenchymal stem cells[J]. PLoS One, 2013,8(4):e62582.
doi: 10.1371/journal.pone.0062582 pmid: 23626837
[15] Dudek KA, Lafont JE, Martinez-Sanchez A , et al. TypeⅡcollagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010,285(32):24381-24387.
doi: 10.1074/jbc.M110.111328 pmid: 2915673
[16] Xu J, Kang Y, Liao WM , et al. MiR-194 regulates chondrogenic differentiation of human adipose-de-rived stem cells by targeting Sox5[J]. PLoS One, 2012,7(3):e31861.
doi: 10.1371/journal.pone.0031861
[17] Parvizi J, Zmistowski B, Berbari EF , et al. New de-finition for periprosthetic joint infection: from the workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011,469(11):2992-2994.
doi: 10.1007/s11999-011-2102-9
[18] Buechli ME, Lamarre J, Koch TG . MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells[J]. Stem Cells Dev, 2013,22(8):1288-1296.
doi: 10.1089/scd.2012.0411 pmid: 23157248
[19] Miyaki S, Nakasa T, Otsuki S , et al. MicroRNA-140 is expressed in differentiated human articular chon-drocytes and modulates interleukin-1 responses[J]. Arthritis Rheum, 2009,60(9):2723-2730.
doi: 10.1002/art.24745 pmid: 2806094
[20] Nicolas FE, Pais H, Schwach F , et al. Mrna expres-sion profiling reveals conserved and non-conserved miR-140 targets[J]. RNA Biol, 2011,8(4):607-615.
doi: 10.4161/rna.8.4.15390 pmid: 21720209
[21] Zhou XZ, Wang J, Sun HT , et al. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene[J]. Cell Tissue Res, 2016,366(1):143-153.
doi: 10.1007/s00441-016-2416-8 pmid: 27177866
[22] Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ , et al. Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb[J]. PLoS One, 2011,6(9):e24546.
doi: 10.1371/journal.pone.0024546 pmid: 3172225
[23] Hou CH, Yang ZB, Kang Y , et al. MiR-193b regula-tes early chondrogenesis by inhibiting the TGF-beta2 signaling pathway[J]. FEBS Lett, 2015,589(9):1040-1047.
doi: 10.1016/j.febslet.2015.02.017 pmid: 25728278
[24] Lin E, Kong L, Bai XH , et al. Mir-199a, a bone mor-phogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem, 2009,284(17):11326-11335.
doi: 10.1074/jbc.M807709200 pmid: 2670138
[25] Pais H, Nicolas FE, Soond SM , et al. Analyzing mRNA expression identifies Smad3 as a microRNA-target regulated only at protein level[J]. RNA, 2010,16(3):489-494.
doi: 10.1261/rna.1701210 pmid: 20071455
[26] Anderson BA , McAlinden A. Mir-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells[J]. J Orthop Res, 2017,35(11):2369-2377.
doi: 10.1002/jor.23552 pmid: 28244607
[27] Tian Y, Guo R, Shi B , et al. MicroRNA-30a pro-motes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression[J]. Life Sci, 2016,148:220-228.
doi: 10.1016/j.lfs.2016.02.031
[28] Zhang YJ, Huang XH, Yuan YH . MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a[J]. Am J Transl Res, 2017,9(1):136-145.
pmid: 28123640
[29] Nah GS, Lim ZW, Tay BH , et al. Runx family genes in a cartilaginous fish, the elephant shark (Callor-hinchus milii)[J]. PLoS One, 2014,9(4):e93816.
doi: 10.1371/journal.pone.0093816 pmid: 24699678
[30] Zhang ZQ, Hou CH, Meng FG , et al. MiR-455-3p regulates early chondrogenic differentiation via inhi-biting Runx2[J]. FEBS Lett, 2015,589(23):3671-3678.
doi: 10.1016/j.febslet.2015.09.032 pmid: 26474644
[31] Ham O, Song B, Lee SY , et al. The role of micro-RNA-23b in the differentiation of MSC into chon-drocyte by targeting protein kinase A signaling[J]. Biomaterials, 2012,33(18):4500-4507.
doi: 10.1016/j.biomaterials.2012.03.025 pmid: 22449550
[32] Tuddenham L, Wheeler G, Ntounia-Fousara S , et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Lett, 2006,580(17):4214-4217.
doi: 10.1016/j.febslet.2006.06.080 pmid: 16828749
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[3] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[4] Qian Suting,Ding Lingmin,Ji Yaning,Lin Jun.. Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis [J]. Int J Stomatol, 2022, 49(3): 349-355.
[5] Ai Xiaoqing,Dou Lei,Qiao Xin,Yang Deqin. MicroRNA profile of exosomes derived from dental pulp stromal cells under three-dimensional culture condition [J]. Int J Stomatol, 2022, 49(1): 27-36.
[6] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[7] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[8] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[9] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[10] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[11] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[12] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[13] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[14] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
[15] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .