Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 177-180.doi: 10.7518/gjkq.2016.02.014

Previous Articles     Next Articles

Research progress on bone marrow mesenchymal stem cell homing to the damaged tissue

Yao Lin, Lin Jiang   

  1. Dept. of Stomatology, The Affiliated Fourth Hospital of Harbin Medical University, Harbin 150001, China)
  • Received:2015-08-18 Revised:2015-11-29 Online:2016-03-01 Published:2016-03-01

Abstract: Bone marrow mesenchymal stem cell(BMMSC) homing to damaged myocardial tissues can restore cardiac loss function. Stromal cell-derived factor(SDF)1 and cysteine-X-chemokine receptor(CXCR)4 are key chemokines that stimulate repaired cell migration to the damage myocardium; BMMSC moves along the mass concentration of SDF1 to achieve gradient-directed migration to target organs. While both BMMSC in coronary arteries and endocardial injections promote higher rates of colonization, the latter is safer and presents fewer adverse reactions. BMMSC release of nerve and stem cell growth factors and brain-derived neurotrophic factor can significantly improve glutamate-induced neuronal damage; moreover, this release is an immune modulator of tissue repair, autoimmune diseases, and graft-versus-host disease. BMMSC can regulate the expression of the epidermal growth factor receptor and chemokines of CXCR4 in tumor tissue, thereby controlling tumor cell proliferation. BMMSC are also ideal cells in periodontal tissue engineering; frozen BMMSC can maintain their fresh characteristics and homing ability is increased. BMMSC migration into the periodontal injury tissue can provide a new perspective for the repair and regeneration of periodontal-damaged tissue.

Key words: mesenchymal stem cell, bone marrow, tissue damage, homing, mesenchymal stem cell, bone marrow, tissue damage, homing

CLC Number: 

  • Q 256

TrendMD: 
[1] Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells[J]. Ann Thorac Surg, 2002, 74(1):19-24.
[2] Belema-Bedada F, Uchida S, Martire A, et al. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2 [J]. Cell Stem Cell, 2008, 2(6):566-575.
[3] Kim D, Chun BG, Kim YK, et al. In vivo tracking of human mesenchymal stem cells in experimental stroke[J]. Cell Transplant, 2008, 16(10):1007-1012.
[4] Russo V, Young S, Hamilton A, et al. Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury[J]. Biomaterials, 2014, 35(13):3956-3974.
[5] Hoover-Plow J, Gong Y. Challenges for heart disease stem cell therapy[J]. Vasc Health Risk Manag, 2012, 8:99-113.
[6] Wang WE, Yang D, Li L, et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium[J]. Circ Res, 2013, 113(3):288-300.
[7] Chen XQ, Chen LL, Fan L, et al. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats[J]. Biochem Biophys Res Commun, 2014, 447(1):145-151.
[8] Tyukavin AI, Galagudza MM, Mikhailov VM, et al. Mechanism of targeted migration of mesenchymal stem cells[J]. Bull Exp Biol Med, 2012, 153(4):577-580.
[9] Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities[J]. Stem Cells, 2007, 25(7):1737-1745.
[10] Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo[J]. Stem Cells, 2013, 31(1):203-214.
[11] Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J]. Stem Cells, 2006, 24(4):1030-1041.
[12] Song CH, Honmou O, Furuoka H, et al. Identification of chemoattractive factors involved in the migration of bone marrow-derived mesenchymal stem cells to brain lesions caused by prions[J]. J Virol, 2011, 85(21):11069-11078.
[13] Kitaori T, Ito H, Schwarz EM, et al. Stromal cellderived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J]. Arthritis Rheum, 2009, 60(3):813-823.
[14] Li M, Yu J, Li Y, et al. CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis[J]. Exp Mol Pathol, 2010, 88(2):250-255.
[15] Song C, Li G. CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors[J]. Cytotherapy, 2011, 13(5):549-561.
[16] Cheng P, Gao ZQ, Liu YH, et al. Platelet-derived growth factor BB promotes the migration of bone marrow-derived mesenchymal stem cells towards C6 glioma and up-regulates the expression of intracellular adhesion molecule-1[J]. Neurosci Lett, 2009, 451(1):52-56.
[17] Rüster B, G?ttig S, Ludwig RJ, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells[J]. Blood, 2006, 108(12):3938-3944.
[18] Ip JE, Wu Y, Huang J, et al. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment[J]. Mol Biol Cell, 2007, 18(8):2873-2882.
[19] Smith H, Whittall C, Weksler B, et al. Chemokines stimulate bidirectional migration of human mesenchymal stem cells across bone marrow endothelial cells[J]. Stem Cells Dev, 2012, 21(3):476-486.
[20] Ries C, Egea V, Karow M, et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines[J]. Blood, 2007, 109(9):4055-4063.
[21] Neuss S, Schneider RK, Tietze L, et al. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots[J]. Cells Tissues Organs, 2010, 191(1):36-46.
[22] Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia: from basic science to clinical applications[J]. J Cereb Blood Flow Metab, 2012, 32(7):1317-1331.
[23] Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense[J]. Blood, 2012, 119(8):1801-1809.
[24] Pang CJ, Tong L, Ji LL, et al. Synergistic effects of ultrashort wave and bone marrow stromal cells on nerve regeneration with acellular nerve allografts[J]. Synapse, 2013, 67(10):637-647.
[25] Xiang Y, Zheng Q, Jia B, et al. Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells[J]. Cell Biol Int, 2007, 31(5):444-450.
(本文采编 王晴)
[1] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[2] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[3] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[4] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[5] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[6] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[7] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[8] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[9] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
[10] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[11] Dingli Feng,Lidan Zhuo,Di Lu,Hongyan Guo. Mechanism of microRNA modulation of cartilage differentiation in mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(6): 640-645.
[12] Ge Yihong, Fang Fuchun, Wu Buling. Regulate process of long non-coding RNA in multi-differentiation of mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(3): 267-271.
[13] Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin. A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(1): 55-58.
[14] Xue Lingfa, Zhang Daizun, Xiao Wenlin, Yu Baojun. Mechanical strain induces mouse bone mesenchymal stem cells osteogenic differentiation [J]. Inter J Stomatol, 2017, 44(6): 679-685.
[15] Zhang Jiankang, Wei Junjun, Tang Zhaolong, Yu Yunbo, Jing Wei. Regulation of Wnt and Notch signaling pathways in the osteogenic differentiation of bone marrow-derived mesen-chymal stem cells from aged individuals [J]. Inter J Stomatol, 2017, 44(4): 459-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .