Inter J Stomatol ›› 2014, Vol. 41 ›› Issue (2): 204-208.doi: 10.7518/gjkq.2014.02.022

Previous Articles     Next Articles

Nitric oxide and other gas signaling molecules and periodontal disease

Wang Yanzhi, Li Shu.   

  1. Dept. of Periodontics, Hospital of Stomatology, Shandong University; Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan 250012, China
  • Received:2013-06-05 Revised:2013-10-11 Online:2014-03-01 Published:2014-03-01

Abstract:

In periodontal diseases, nitric oxide can kill Porphytomonas gingivalis, the mechanism of which may involve combination of nitric oxide with key enzymes of microorganisms and inactivating them. High volume fraction of nitric oxide can cause blood vessels to dilate and lower platelet aggregation, causing gum bleeding. Carbon monoxide can inhibit the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, reduce the activity of nuclear factor(NF)-κB predominately induced by intercellular adhesion molecule-1 and vascular cell adhesion molecule, as well as lower immune active cells to vascular endothelial cells and gingival fibroblast adhesion, thus controlling periodontitis pathological inflammation. Hydrogen sulfide promotes the occurrence of periodontal disease by increasing the expression of interleukin(IL)-8 in gingival epithelium. Overexpression of IL-8 promotes accumulation of neutrophils, which causes periodontal tissue damage. Hydrogen sulfide can cause alveolar bone absorption because hydrogen sulfide can upregulate the expression of the receptor activator of nuclear factor-κB ligand(RANKL), which promotes the differentiation of the osteoclast. Hydrogen sulfide increases the permeability of the mucosa, causing inflammation. The reason for this phenomenon is that hydrogen sulfide destroys the integrity of the periodontal tissue barrier, which increases mucous membrane permeability. Hydrogen sulfide inhibits synthesis of collagen and promotes its degradation. Hydrogen can relieve inflammation of periodontal tissue. The mechanism may reduce hydrogen and the volume fraction of reactive oxygen species, reduce the infiltration of neutrophils in organization and osteoclast differentiation, or reduce the activity of inflammatory signal transduction pathways, such as the mitogen-activated protein kinase signal transduction pathway. Hydrogen inhibits the combination of RANKL and NF-κB receptor activation factor by eliminating active oxygen, thus decreasing bone absorption by reducing the formation of actin in osteoclasts. Therefore, a study on gaseous molecules, such as nitric oxide, carbon monoxide, hydrogen sulfide and hydrogen, may lead to new insights for prevention and treatment of periodontal disease.

Key words: periodontal disease, nitric oxide, carbon monoxide, hydrogen sulfide, hydrogen

CLC Number: 

  • Q 51

TrendMD: 
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wang Lei,Ye Ling,Wang Chenglin.. Management and prevention strategies for complications of internal bleaching [J]. Int J Stomatol, 2023, 50(3): 359-365.
[3] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[4] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[5] Li Guiping,Qin Xu,Zhu Guangxun.. Research progress on adenosine monophosphate-activated protein kinase in periodontal disease [J]. Int J Stomatol, 2022, 49(3): 343-348.
[6] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[7] Zhang Xuewen,Li Cong,Xu Xiaoyin,Gao Jing,Shen Jing. Hybrid light source in vital dental bleaching [J]. Int J Stomatol, 2021, 48(6): 683-689.
[8] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[9] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
[10] Shen Yifen,Liu Chao,Tang Ying,Gu Yongchun. Research progress on effects of electronic cigarette exposure on periodontal health [J]. Int J Stomatol, 2021, 48(3): 347-353.
[11] Qin Xiaoru,Liu Mengyuan. Association between periodontal disease and myocardial infarction: a Meta-analysis of cohort studies [J]. Int J Stomatol, 2021, 48(2): 165-172.
[12] Chen Liang,Ding Yi,Meng Shu. Research progress of host modulation therapy in the treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(6): 706-710.
[13] Jia Leming,Jia Xiaoyue,Yang Ran,Zhou Xuedong,Xu Xin. Progress on the application of probiotics in the management of periodontal diseases [J]. Int J Stomatol, 2020, 47(5): 515-521.
[14] Liu Lin,Zhou Jieyu,Wu Yafei,Zhao Lei. Application of probiotic ecological regulation in prevention and treatment of periodontal diseases [J]. Int J Stomatol, 2020, 47(2): 131-137.
[15] Chen Yanyan,Peng Xian,Zhou Xuedong,Cheng Lei. Application of quantitative light-induced fluorescence in the clinical treatment of caries and periodontal diseases [J]. Int J Stomatol, 2019, 46(6): 699-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .