国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (3): 349-357.doi: 10.7518/gjkq.2025046

• 论著 • 上一篇    

沉默信息调节因子1调控成骨成血管功能促进颌骨缺损愈合的实验研究

刘志凯1(),刘航航2,刘士博1,李帛伦1,刘瑶1,罗恩1()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院正颌及关节外科 成都 610041
    2.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院急诊科 成都 610041
  • 收稿日期:2024-07-19 修回日期:2024-12-01 出版日期:2025-05-01 发布日期:2025-04-30
  • 通讯作者: 罗恩
  • 作者简介:刘志凯,住院医师,硕士,Email:liuzhikai2015@qq.com
  • 基金资助:
    国家自然科学基金面上项目(82370932);四川省重点研发项目(2024YFFK0204);四川省自然科学基金青年项目(2023-NSFSC1512)

Promotion of mandibular defect healing through the regulation of osteogenic and angiogenic functions by sirtuin 1

Zhikai Liu1(),Hanghang Liu2,Shibo Liu1,Bolun Li1,Yao Liu1,En Luo1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic and Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Emergency, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-07-19 Revised:2024-12-01 Online:2025-05-01 Published:2025-04-30
  • Contact: En Luo
  • Supported by:
    National Natural Science Foundation of China(82370932);Key Research and Development Project of Sichuan Province(2024YFFK0204);Natural Science Foundation Youth Project of Sichuan Province(2023NSFSC1512)

摘要:

目的 探究沉默信息调节因子1(SIRT1)在体内外条件下对小鼠成骨成血管功能及颌骨缺损愈合的影响。 方法 使用SIRT1特异性激活剂及抑制剂干预小鼠胚胎前体成骨细胞(MC3T3-E1)及小鼠颌骨缺损,采用细胞计数试剂(CCK-8)、实时荧光定量聚合酶链反应、蛋白免疫印迹、碱性磷酸酶(ALP)染色、免疫荧光染色等多种方式,研究SIRT1对MC3T3-E1细胞成骨成血管因子表达、小鼠颌骨缺损愈合及颌骨缺损成骨成血管功能的影响。 结果 细胞实验中SIRT1激活时可促进MC3T3-E1细胞成骨成血管因子表达和ALP活性;动物实验中SIRT1激活可促进颌骨缺损的愈合,同时增强颌骨缺损区域成骨成血管功能;抑制SIRT1活性时则会抑制上述过程。 结论 SIRT1可通过调控小鼠颌骨成骨成血管功能促进颌骨缺损的愈合过程。

关键词: 沉默信息调节因子1, 血管生成, 颌骨缺损, 骨再生

Abstract:

Objective This study aims to investigate the effect of sirtuin 1 (SIRT1) on osteogenic and angiogenic functions in mice under in vivo and in vitro conditions, as well as its effect on mandibular defect healing. Methods SIRT1 activators and inhibitors were used to intervene in MC3T3-E1 cells and mandibular defects in mice. Various methods, including cell counting kit-8 (CCK-8) assay, real-time quantitative polymerase chain reaction, Western blot, alkaline phosphatase staining, and immunofluorescence staining, were employed to study the influence of SIRT1 on the expression of osteogenic and angiogenic factors in MC3T3-E1 cells, as well as the healing and osteogenic and angiogenic functions of mandibular defects in mice. Results In in vitro experiments, the activation of SIRT1 promo-ted the expression of osteogenic and angiogenic factors in MC3T3-E1 cells. In in vivo experiments, SIRT1 activation facilitated the hea-ling of mandibular defects and enhanced the osteogenic and angiogenic functions of the mandibular defects. Conversely, the inhibition of SIRT1 activity suppressed the aforementioned processes. Conclusion SIRT1 can promote the healing of mandibular defects by regulating the osteogenic and angiogenic functions in mice.

Key words: sirtuin 1, angiogenesis, mandibular defect, bone regeneration

中图分类号: 

  • R782

表 1

成骨及成血管相关基因引物序列"

基因引物序列F(5’-3’)引物序列R(5’-3’)
ALPCCAACTCTTTTGTGCCAGAGAGGCTACATTGGTGTTGAGCTTTT
Runx2TTCAACGATCTGAGATTTGTGGGGGATGAGGAATGCGCCCTA
VEGFCTGCCGTCCGATTGAGACCCCCCTCCTTGTACCACTGTC
Slit3TGCCCCACCAAGTGTACCTGGCCAGCGAAGTCCATTTTG
GAPDHAGGTCGGTGTGAACGGATTTGTGTAGACCATGTAGTTGAGGTCA

图1

不同浓度SRT1720和EX527对MC3T3-E1细胞增殖能力的影响A:不同浓度SRT1720和EX527处理24 h对MC3T3-E1细胞增殖能力的影响;B:不同浓度SRT1720和EX527处理48 h对MC3T3-E1细胞增殖能力的影响。*:P<0.05;**:P<0.01;***:P<0.001。"

图2

3 d时SIRT1激活剂及抑制剂对MC3T3-E1细胞成骨成血管因子表达的影响A:不同浓度SRT1720和EX527对MC3T3-E1细胞成骨成血管相关基因表达的影响;B:不同浓度SRT1720和EX527对MC3T3-E1细胞成骨成血管相关蛋白表达的影响。*:P<0.05;**:P<0.01;***:P<0.001;****:P<0.000 1。"

图3

7 d时SIRT1激活剂及抑制剂对MC3T3-E1细胞成骨成血管因子表达的影响A:不同浓度SRT1720和EX527对MC3T3-E1细胞成骨成血管相关基因表达的影响;B:不同浓度SRT1720和EX527对MC3T3-E1细胞成骨成血管相关蛋白表达的影响。*:P<0.05;**:P<0.01;***:P<0.001;****:P<0.000 1。"

图4

7 d时SIRT1激活剂及抑制剂对MC3T3-E1细胞ALP染色的影响A:不同浓度SRT1720对MC3T3-E1细胞ALP染色的影响;B:不同浓度SRT1720干预MC3T3-E1细胞后ALP染色的定量分析;C:不同浓度EX527对MC3T3-E1细胞ALP染色的影响;D:不同浓度EX527干预MC3T3-E1细胞后ALP染色的定量分析。***:P<0.001。"

图5

7 d时SIRT1激活剂及抑制剂对颌骨缺损愈合的影响A:SRT1720和EX527干预后颌骨缺损愈合情况的Micro-CT重建结果;B:颌骨缺损愈合情况的Micro-CT定量分析;C:7 d时颌骨缺损愈合组织的HE染色(黑色三角示新骨形成情况);D:7 d时颌骨缺损愈合组织的Masson染色(黑色三角示新骨形成情况)。**:P<0.01。"

图6

7 d时SIRT1激活剂及抑制剂对颌骨缺损成骨及成血管因子表达的影响A:SRT1720和EX527干预后颌骨缺损Runx2免疫荧光染色结果(白色三角示阳性染色区域);B:Runx2免疫荧光染色定量分析;C:SRT1720和EX527干预后颌骨缺损CD31免疫荧光染色结果(白色三角示阳性染色区域);D:CD31免疫荧光染色定量分析。***:P<0.001。"

1 Di Maggio N, Banfi A. The osteo-angiogenic signa-ling crosstalk for bone regeneration: harmony out of complexity[J]. Curr Opin Biotechnol, 2022, 76: 102750.
2 Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration[J]. Bone, 2015, 70: 19-27.
3 Stucker S, Chen JY, Watt FE, et al. Bone angiogenesis and vascular niche remodeling in stress, aging, and diseases[J]. Front Cell Dev Biol, 2020, 8: 602269.
4 Shen JJ, Sun Y, Liu XZ, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteoge-nesis via Wnt/β-catenin signaling[J]. Stem Cell Res Ther, 2021, 12(1): 415.
5 Liu XN, Zhang PL, Gu Y, et al. Type H vessels: functions in bone development and diseases[J]. Front Cell Dev Biol, 2023, 11: 1236545.
6 Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compoun-ds[J]. Nat Rev Mol Cell Biol, 2016, 17(11): 679-690.
7 石玉, 尹贝, 李鑫, 等. 表观遗传和代谢调控间充质干细胞成骨分化的研究进展[J]. 生物医学转化, 2023, 4(2): 57-71.
Shi Y, Yin B, Li X, et al. Research progress on the epigenetic and metabolic regulation on osteogenesis of MSCs[J]. Biomed Transform, 2023, 4(2): 57-71.
8 Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 402.
9 Zhang WJ, Huang QB, Zeng ZH, et al. Sirt1 inhibits oxidative stress in vascular endothelial cells[J]. O-xid Med Cell Longev, 2017, 2017: 7543973.
10 Wang H, Hu ZX, Wu J, et al. Sirt1 promotes osteogenic differentiation and increases alveolar bone mass via Bmi1 activation in mice[J]. J Bone Miner Res, 2019, 34(6): 1169-1181.
11 李明哲, 罗国厂, 张仲博, 等. 虎杖苷促进大鼠骨质疏松性骨折的作用及对SIRT1/FoxO1信号通路的影响[J]. 中国骨质疏松杂志, 2023, 29(8): 1154-1159.
Li MZ, Luo GC, Zhang ZB, et al. The effect of polydatin on promoting osteoporotic fracture healing in rats and its effect on SIRT1/FoxO1 signaling pathway[J]. Chin J Osteoporos, 2023, 29(8): 1154-1159.
12 Zhang JK, Pan J, Jing W. Motivating role of type H vessels in bone regeneration[J]. Cell Prolif, 2020, 53(9): e12874.
13 Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss[J]. Nat Med, 2018, 24(6): 823-833.
14 Kim BJ, Lee YS, Lee SY, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation[J]. J Clin Invest, 2018, 128(4): 1429-1441.
15 张思钰, 舒晴, 贾绍辉, 等. 组蛋白乙酰化对间充质干细胞成骨分化影响机制的研究[J]. 中国骨质疏松杂志, 2023, 29(2): 232-236, 247.
Zhang SY, Shu Q, Jia SH, et al. Research progress on the mechanism of histone acetylation on osteogenic differentiation of mesenchymal stem cells[J]. Chin J Osteoporos, 2023, 29(2): 232-236, 247.
16 Lemieux ME, Yang X, Jardine K, et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals[J]. Mech Ageing Dev, 2005, 126(10): 1097-1105.
17 Louvet L, Leterme D, Delplace S, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency[J]. Bone, 2020, 136: 115361.
18 Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deace-tylating β-catenin[J]. EMBO Mol Med, 2013, 5(3): 430-440.
19 Domazetovic V, Marcucci G, Falsetti I, et al. Blueberry juice antioxidants protect osteogenic activity against oxidative stress and improve long-term activation of the mineralization process in human osteoblast-like SaOS-2 cells: involvement of SIRT1[J]. Antioxidants, 2020, 9(2): 125.
20 Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging[J]. Cell, 2019, 176(4): 944-945.
21 Lipphardt M, Dihazi H, Müller GA, et al. Fibroge-nic secretome of sirtuin 1-deficient endothelial cells: Wnt, Notch and glycocalyx rheostat[J]. Front Phy-siol, 2018, 9: 1325.
22 Tombran-Tink J, Barnstable CJ. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone[J]. Biochem Biophys Res Commun, 2004, 316(2): 573-579.
[1] 秦庆钊,温奥楠,高梓翔,朱玉佳,王勇,赵一姣. 口腔颌面缺损修复数字化设计方法的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 272-280.
[2] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[3] 王素杰,谭芹,韦渊,王洁,范杰,岳二丽. 口腔扁平苔藓患者血清血管生成素-2水平与叉头翼状螺旋转录因子阳性调节性T细胞及疾病活动度的相关性分析[J]. 国际口腔医学杂志, 2023, 50(6): 674-678.
[4] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[5] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[6] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[7] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[8] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[9] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[10] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[11] 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562.
[12] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397.
[13] 周丰,陈野,陈晨,张奕宁,耿瑞蔓,刘戟. 沉默信息调节因子1调控牙周炎发生发展的机制[J]. 国际口腔医学杂志, 2021, 48(3): 341-346.
[14] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[15] 赵彬彬,仲维剑,马国武. 牙本质作为骨移植材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!