国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 246-256.doi: 10.7518/gjkq.2025028
Yanbei Lu1(),Zhengjuan Li1,Lei Lei2(
),Jingjing Luo2
摘要:
口腔鳞状细胞癌(OSCC)是口腔颌面部最常见的恶性肿瘤,恶性程度较高。放射治疗是OSCC综合序列治疗的重要手段,对原位肿瘤治疗效果良好,但术后肿瘤复发和转移较常见,致死率高;其主要原因在于部分肿瘤具有显著的放射抵抗,存活的癌细胞可表现出增殖、侵袭和迁移增强,发生上皮-间充质转化,甚至获得癌干细胞表型。磷脂酰肌醇3激酶/蛋白激酶B(PI3K/PKB,通常称PI3K/Akt)信号通路及其信号组分广泛参与OSCC发生发展和治疗预后的调控,已被证明与OSCC放射抵抗呈正相关;但其具体调控机制仍待进一步探索。本综述聚焦PI3K信号通路与OSCC的放射抵抗,从癌细胞、癌干细胞和肿瘤微环境三方面总结当前的研究进展,讨论PI3K介导的放射抵抗分子机制,以期为提高OSCC放疗敏感性和改善患者预后提供有效的潜在分子靶标。
中图分类号:
1 | 陈新, 徐文华, 周健, 等. 口腔鳞状细胞癌现状[J]. 口腔医学, 2017, 37(5): 462-465. |
Chen X, Xu WH, Zhou J, et al. Current situation of oral squamous cell carcinoma[J]. Stomatology, 2017, 37(5): 462-465. | |
2 | Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(7): 873-898. |
3 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
4 | Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma: an update[J]. CA Cancer J Clin, 2015, 65(5): 401-421. |
5 | Colevas AD, Yom SS, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018, 16(5): 479-490. |
6 | Feller G, Khammissa RAG, Nemutandani MS, et al. Biological consequences of cancer radiotherapy in the context of oral squamous cell carcinoma[J]. Head Face Med, 2021, 17(1): 35. |
7 | Liu YF, Yang M, Luo JJ, et al. Radiotherapy targe-ting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer[J]. Int J Oral Sci, 2020, 12(1): 19. |
8 | An LB, Li MY, Jia QG. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma[J]. Mol Cancer, 2023, 22(1): 140. |
9 | Yu L, Wei J, Liu PD. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2022, 85: 69-94. |
10 | Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, et al. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer[J]. Cells, 2020, 9(7): 1651. |
11 | Yamamoto VN, Thylur DS, Bauschard M, et al. Overcoming radioresistance in head and neck squamous cell carcinoma[J]. Oral Oncol, 2016, 63: 44-51. |
12 | 陈树伟, 杨安奎, 张诠, 等. 单中心24年1 915例口腔鳞癌的临床病理特征和生存分析[J]. 口腔疾病防治, 2020, 28(8): 487-493. |
Chen SW, Yang AK, Zhang Q, et al. Analysis of clinicopathological characteristics and survival of 1 915 oral cavity squamous cell carcinoma patients: 24-year experience from a single institution[J]. J Dent Prev Treat, 2020, 28(8): 487-493. | |
13 | Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer[J]. Nat Rev Clin Oncol, 2015, 12(9): 527-540. |
14 | Cai MJ, Zheng ZC, Bai ZB, et al. Overexpression of angiogenic factors and matrix metalloproteinases in the saliva of oral squamous cell carcinoma patients: potential non-invasive diagnostic and therapeutic biomarkers[J]. BMC Cancer, 2022, 22(1): 530. |
15 | Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited[J]. Stem Cells, 2010, 28(4): 639-648. |
16 | Liu YF, Sun TX, Yang J, et al. Fractionated irradiation induces radioresistant oral carcinoma cells with enhanced malignant phenotypes[J]. Arch Oral Biol, 2024, 164: 105988. |
17 | He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 425. |
18 | Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. |
19 | Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16(1): 10. |
20 | Martins F, de Sousa SC, dos Santos E, et al. PI3K-AKT-mTOR pathway proteins are differently expressed in oral carcinogenesis[J]. J Oral Pathol Med, 2016, 45(10): 746-752. |
21 | Tashiro K, Oikawa M, Miki Y, et al. Immunohistochemical assessment of growth factor signaling mo-lecules: MAPK, Akt, and STAT3 pathways in oral epithelial precursor lesions and squamous cell carcinoma[J]. Odontology, 2020, 108(1): 91-101. |
22 | Liu L, Chen JL, Cai XJ, et al. Progress in targeted therapeutic drugs for oral squamous cell carcinoma[J]. Surg Oncol, 2019, 31: 90-97. |
23 | Roy NK, Monisha J, Padmavathi G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253. |
24 | Harsha C, Banik K, Ang HL, et al. Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials[J]. Int J Mol Sci, 2020, 21(9): 3285. |
25 | 王玉洁, 范迪, 施俊. Buparlisib通过PI3K/AKT通路调控人口腔鳞状细胞癌细胞增殖和凋亡的研究[J]. 临床口腔医学杂志, 2021, 37(1): 15-18. |
Wang YJ, Fan D, Shi J. Effects of Buparlisib on human oral squamous cell carcinoma cell proliferation and apoptosis via PI3K/AKT signaling in vitro [J]. J Clin Stomatol, 2021, 37(1): 15-18. | |
26 | Liao DJ, Thakur A, Wu J, et al. Perspectives on c-Myc, Cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy[J]. Crit Rev Oncog, 2007, 13(2): 93-158. |
27 | Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7. |
28 | Stewart J, Siavash H, Hebert C, et al. Phenotypic switching of VEGF and collagen Ⅹ Ⅷ during hypo-xia in head and neck squamous carcinoma cells[J]. Oral Oncol, 2003, 39(8): 862-869. |
29 | White ES, Sagana RL, Booth AJ, et al. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway[J]. Exp Cell Res, 2010, 316(16): 2644-2653. |
30 | Nguyen KA, DePledge LN, Bian L, et al. Polymorphonuclear myeloid-derived suppressor cells and phosphatidylinositol-3 kinase gamma are critical to tobacco-mimicking oral carcinogenesis in mice[J]. J Immunother Cancer, 2023, 11(9): e007110. |
31 | Gomez KE, Wu FL, Keysar SB, et al. Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells[J]. Cancer Res, 2020, 80(19): 4185-4198. |
32 | 黄国定, 潘敏丽, 卢宏全, 等. 基于PI3K/Akt信号通路探讨BRCA1缺失对乳腺癌细胞放射敏感性的影响[J]. 华南国防医学杂志, 2022, 36(6): 411-416, 456. |
Huang GD, Pan ML, Lu HQ, et al. Study on the effects of BRCA1 gene deletion on the radiosensitivity of breast cancer based on PI3K/Akt signaling pathway[J]. Mil Med J South China, 2022, 36(6): 411-416, 456. | |
33 | 唐淳翰. DNAJC19通过PI3K/AKT信号调节自噬参与人NSCLC的放射敏感性研究[D]. 成都: 成都医学院, 2023. |
Tang CH. DNAJC19 regulates autophagy via PI3K/AKT signaling pathway in the radiosensitivity of NSCLC[D]. Chengdu: Chengdu Medical College, 2023. | |
34 | Deng H, Chen YM, Wang L, et al. PI3K/mTOR inhibitors promote G6PD autophagic degradation and exacerbate oxidative stress damage to radiosensitize small cell lung cancer[J]. Cell Death Dis, 2023, 14(10): 652. |
35 | Xu SB, Li Y, Lu YW, et al. LZTS2 inhibits PI3K/AKT activation and radioresistance in nasopharyngeal carcinoma by interacting with p85[J]. Cancer Lett, 2018, 420: 38-48. |
36 | Barker HE, Paget JT, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425. |
37 | You GR, Cheng AJ, Lee LY, et al. Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses[J]. BMC Cancer, 2019, 19(1): 64. |
38 | 赵晓苇, 周静萍, 毕于蓝, 等. PI3K/AKT信号通路在促进口腔鳞癌侵袭转移中的作用[J]. 皖南医学院学报, 2019, 38(1): 75-79. |
Zhao XW, Zhou JP, Bi YL, et al. Role of PI3K/AKT signaling pathway in promoting invasion and metastasis of oral squamous cell carcinoma[J]. J Wannan Med Coll, 2019, 38(1): 75-79. | |
39 | Network CGA. Comprehensive genomic characte-rization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582. |
40 | Pectasides E, Founztilas G, Sasaki C, et al. Assessment of phosphatidylinositol-3 kinase (PI3K) as a prognostic marker in head and neck squamous cell carcinoma (HNSCC) [J]. J Clin Oncol, 2009, 27(): e17028. |
41 | Ferreira DM, Neves TJ, Lima LGCA, et al. Prognostic implications of the phosphatidylinositol 3-kinase/Akt signaling pathway in oral squamous cell carcinoma: overexpression of p-mTOR indicates an adverse prognosis[J]. Appl Cancer Res, 2017, 37(1): 41. |
42 | de Kort WWB, de Ruiter EJ, Haakma WE, et al. P-mTOR, p-ERK and pten expression in tumor biopsies and organoids as predictive biomarkers for patients with HPV negative head and neck cancer[J]. Head Neck Pathol, 2023, 17(3): 697-707. |
43 | Chang HC, Yang CC, Loi LK, et al. Interplay of p62-mTORC1 and EGFR signaling promotes cisplatin resistance in oral cancer[J]. Heliyon, 2024, 10(6): e28406. |
44 | Guo T, Zamuner F, Ting S, et al. Clinical and genomic characterization of chemoradiation-resistant HPV-positive oropharyngeal squamous cell carcinoma[J]. Front Oncol, 2024, 14: 1336577. |
45 | Sacconi A, Muti, Pulito C, et al. Immunosignatures associated with TP53 status and co-mutations classify prognostically head and neck cancer patients[J]. Mol Cancer, 2023, 22(1): 192. |
46 | 王雨, 刘霞, 贾永峰, 等. 口腔鳞状细胞癌中CXCL12/CXCR4和PI3K/AKT蛋白表达与淋巴结转移的关系[J]. 临床与病理杂志, 2021, 41(5): 977-983. |
Wang Y, Liu X, Jia YF, et al. Relationship between the protein expression of CXCL12/CXCR4 and PI3K/AKT and lymph node metastasis in oral squamous cell carcinoma[J]. J Clin Pathol Res, 2021, 41(5): 977-983. | |
47 | Tarquinio SB, Zhang ZC, Neiva KG, et al. Endothelial cell Bcl-2 and lymph node metastasis in patients with oral squamous cell carcinoma[J]. J Oral Pathol Med, 2012, 41(2): 124-130. |
48 | Yu CC, Huang HB, Hung SK, et al. AZD2014 radiosensitizes oral squamous cell carcinoma by inhibi-ting AKT/mTOR axis and inducing G1/G2/M cell cycle arrest[J]. PLoS One, 2016, 11(3): e0151942. |
49 | Yu CC, Hung SK, Lin HY, et al. Targeting the PI3K/AKT/mTOR signaling pathway as an effectively radiosensitizing strategy for treating human oral squamous cell carcinoma in vitro and in vivo [J]. Oncotarget, 2017, 8(40): 68641-68653. |
50 | Day D, Prawira A, Spreafico A, et al. Phase Ⅰ trial of alpelisib in combination with concurrent cisplatin-based chemoradiotherapy in patients with locoregionally advanced squamous cell carcinoma of the head and neck[J]. Oral Oncol, 2020, 108: 104753. |
51 | Gemenetzidis E, Gammon L, Biddle A, et al. Invasive oral cancer stem cells display resistance to ionising radiation[J]. Oncotarget, 2015, 6(41): 43964-43977. |
52 | Lindemann A, Takahashi H, Patel AA, et al. Targe-ting the DNA damage response in OSCC with TP53 mutations[J]. J Dent Res, 2018, 97(6): 635-644. |
53 | Ganci F, Pulito C, Valsoni S, et al. PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2020, 26(12): 2956-2971. |
54 | Hong CR, Liew LP, Wong WW, et al. Identification of 6-anilino imidazo[4, 5-c]pyridin-2-ones as selective DNA-dependent protein kinase inhibitors and their application as radiosensitizers[J]. J Med Chem, 2024, 67(14): 12366-12385. |
55 | Nisa L, Francica P, Giger R, et al. Targeting the MET receptor tyrosine kinase as a strategy for radiosensitization in locoregionally advanced head and neck squamous cell carcinoma[J]. Mol Cancer Ther, 2020, 19(2): 614-626. |
56 | Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells[J]. Sci Rep, 2020, 10(1): 16208. |
57 | Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9): 1745-1770. |
58 | Lee SH, Hong HS, Liu ZX, et al. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells[J]. Biochem Biophys Res Commun, 2012, 424(1): 58-64. |
59 | Liu YY, Shen L, Li Y, et al. ETS1-mediated regulation of SOAT1 enhances the malignant phenotype of oral squamous cell carcinoma and induces tumor-associated macrophages M2-like polarization[J]. Int J Biol Sci, 2024, 20(9): 3372-3392. |
60 | Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-associated fibroblasts in oral cancer: a current perspective on function and potential for therapeutic targe-ting[J]. Front Oral Health, 2021, 2: 686337. |
61 | Piper M, Mueller AC, Karam SD. The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy[J]. Mol Carcinog, 2020, 59(7): 754-765. |
62 | Liu YF, Wu Y, Yang M, et al. Ionizing radiation-induced “zombie” carcinoma-associated fibroblasts with suppressed pro-radioresistance on OSCC cells[J]. Oral Dis, 2023, 29(2): 563-573. |
63 | Zhang XX, Dong YC, Zhao MX, et al. ITGB2-me-diated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system[J]. Theranostics, 2020, 10(26): 12044-12059. |
64 | Ferreira Mendes JM, de Faro Valverde L, Torres Andion Vidal M, et al. Effects of IGF-1 on proliferation, angiogenesis, tumor stem cell populations and activation of AKT and hedgehog pathways in oral squamous cell carcinoma[J]. Int J Mol Sci, 2020, 21(18): 6487. |
65 | de Sanctis F, Ugel S, Facciponte J, et al. The dark side of tumor-associated endothelial cells[J]. Semin Immunol, 2018, 35: 35-47. |
66 | Duarte A, André-Grégoire G, Trillet K, et al. Inhibition of mTOR in head and neck cancer cells alters endothelial cell morphology in a paracrine fashion[J]. Mol Carcinog, 2019, 58(1): 161-168. |
67 | Zhou H, Yang YH, Binmadi NO, et al. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma[J]. Exp Cell Res, 2012, 318(14): 1685-1698. |
68 | Weichselbaum RR, Liang H, Deng LF, et al. Radiotherapy and immunotherapy: a beneficial liaison[J]. Nat Rev Clin Oncol, 2017, 14(6): 365-379. |
69 | Mirghani H, Amen F, Tao YG, et al. Increased radiosensitivity of HPV-positive head and neck cancers: molecular basis and therapeutic perspectives[J]. Cancer Treat Rev, 2015, 41(10): 844-852. |
70 | Chandrasekaran S, Sasaki M, Scharer CD, et al. Phosphoinositide 3-kinase signaling can modulate MHC Class Ⅰ and Ⅱ expression[J]. Mol Cancer Res, 2019, 17(12): 2395-2409. |
71 | Yoon YN, Lee E, Kwon YJ, et al. PI3Kδ/γ inhibitor BR101801 extrinsically potentiates effector CD8+ T cell-dependent antitumor immunity and abscopal effect after local irradiation[J]. J Immunother Cancer, 2022, 10(3): e003762. |
72 | Skinner HD, Giri U, Yang LP, et al. Integrative ana-lysis identifies a novel AXL-PI3 kinase-PD-L1 signaling axis associated with radiation resistance in head and neck cancer[J]. Clin Cancer Res, 2017, 23(11): 2713-2722. |
73 | Shayan G, Srivastava R, Li J, et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer[J]. Oncoimmunology, 2017, 6(1): e1261779. |
74 | Peng MJ, Fan SQ, Li JJ, et al. Programmed death-ligand 1 signaling and expression are reversible by lycopene via PI3K/AKT and Raf/MEK/ERK pathways in tongue squamous cell carcinoma[J]. Genes Nutr, 2022, 17(1): 3. |
75 | Pore N, Gupta AK, Cerniglia GJ, et al. Nelfinavir down-regulates hypoxia-inducible factor 1alpha and VEGF expression and increases tumor oxygenation: implications for radiotherapy[J]. Cancer Res, 2006, 66(18): 9252-9259. |
76 | Nascimento-Filho CHV, Webber LP, Borgato GB, et al. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN[J]. FASEB J, 2019, 33(12): 13435-13449. |
77 | Kelly CJ, Hussien K, Fokas E, et al. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia[J]. Radiother Oncol, 2014, 111(1): 72-80. |
78 | Bao YY, Zhong JT, Shen LF, et al. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway[J]. J Cell Mol Med, 2022, 26(10): 2881-2894. |
79 | dos Santos ES, Ramos JC, Roza ALOC, et al. The role of osteopontin in oral cancer: a brief review with emphasis on clinical applications[J]. Oral Dis, 2022, 28(2): 326-335. |
80 | de Bem Prunes B, Nunes JS, da Silva VP, et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma[J]. Life Sci, 2022, 288: 120163. |
81 | Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. |
82 | Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer[J]. Recent Results Cancer Res, 2016, 207: 39-72. |
83 | Li ZG, Liu JY, Que L, et al. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019, 10(23): 5770-5784. |
84 | 贺媛, 吴桐, 胡钦朝, 等. 放射对口腔鳞癌细胞DNA损伤和糖酵解的影响[J]. 中华老年口腔医学杂志, 2016, 14(4): 193-198. |
He Y, Wu T, Hu QZ, et al. Effects of radiation on DNA damage and glycolysis of oral squamous cell carcinoma[J]. Chin J Geriatr Dent, 2016, 14(4): 193-198. | |
85 | Cheng J, Huang Y, Zhang XH, et al. TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism[J]. Nat Commun, 2020, 11(1): 1880. |
86 | Ogawa T, Washio J, Takahashi T, et al. Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 118(2): 218-225. |
87 | Mims J, Bansal N, Bharadwaj MS, et al. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer[J]. Radiat Res, 2015, 183(3): 291-304. |
88 | Smith AE, Chan S, Wang ZY, et al. Tipifarnib potentiates the antitumor effects of PI3Kα inhibition in PIK3CA- and HRAS-dysregulated HNSCC via convergent inhibition of mTOR activity[J]. Cancer Res, 2023, 83(19): 3252-3263. |
[1] | 李京哲, 张素欣. 磷脂酰肌醇3-激酶/蛋白激酶B通路抑制剂在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 34-41. |
[2] | 李冰芷, 刘云坤, 王文轩, 侯泽宇, 唐金茹, 李龙江. 口腔鳞状细胞癌嗜神经侵袭的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 362-367. |
[3] | 王文轩,刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江. 晚期糖基化终产物在口腔鳞状细胞癌发展及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 208-216. |
[4] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[5] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[6] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[7] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[8] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[9] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
[10] | 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470. |
[11] | 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143. |
[12] | 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717. |
[13] | 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212. |
[14] | 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57. |
[15] | 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669-676. |
|