国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (6): 679-685.doi: 10.7518/gjkq.2023107
Huang Yuanhong(),Peng Xian,Zhou Xuedong.()
摘要:
骨碎补是我国传统补肾强骨中药,主要含有黄酮类、三萜类、苯丙烷类、木脂素、酚酸等化合物,能有效的改善骨代谢、调控炎症因子,目前被广泛用于治疗骨折、骨关节炎等骨性疾病。口腔骨相关疾病与牙槽骨密度变化和炎症密切相关,近年越来越多的研究将骨碎补应用于口腔医学领域,包括促进牙周病骨愈合、加速正畸治疗牙移动和促进种植体表面骨结合等。本文就骨碎补的生物学功能及其治疗口腔骨相关疾病的研究进展作一综述,以期为后续研究和临床应用提供参考。
中图分类号:
1 | 国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2015: 256. |
National Pharmacopoeia Board. Pharmacopoeia of the People’s Republic of China[M]: 2015. Beijing: China Medical Science and Technology Press, 2015: 256. | |
2 | Qiao X, Lin XH, Liang YH, et al. Comprehensive chemical analysis of the rhizomes of Drynaria fortunei by orthogonal pre-separation and liquid chromatography mass spectrometry[J]. Planta Med, 2014, 80(4): 330-336. |
3 | 谌顺清, 梁伟, 张雪妹, 等. 骨碎补化学成分和药理作用研究进展[J]. 中国中药杂志, 2021, 46(11): 2737-2745. |
Chen SQ, Liang W, Zhang XM, et al. Research progress on chemical compositions and pharmacological action of drynariae rhizoma[J]. China J Chin Mat Med, 2021, 46(11): 2737-2745. | |
4 | Wu L, Ling ZY, Feng XQ, et al. Herb medicines against osteoporosis: active compounds & relevant biological mechanisms[J]. Curr Top Med Chem, 2017, 17(15): 1670-1691. |
5 | Chen L, Tao ZS, Chen H, et al. Combined treatment with alendronate and drynaria rhizome extracts: effect on fracture healing in osteoporotic rats[J]. Z Gerontol Geriatr, 2018, 51(8): 875-881. |
6 | Guo WJ, Shi KS, Xiang GH, et al. Effects of rhizoma drynariae cataplasm on fracture healing in a rat model of osteoporosis[J]. Med Sci Monit, 2019, 25: 3133-3139. |
7 | Sun WP, Li MY, Xie L, et al. Exploring the mechanism of total flavonoids of drynariae rhizoma to improve large bone defects by network pharmacology and experimental assessment[J]. Front Pharmacol, 2021, 12: 603734. |
8 | Sun WP, Li MY, Zhang Y, et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-Smad signaling pathway induced large tibial defect rats[J]. Biomedecine Pharmacother, 2021, 138: 111480. |
9 | Yu GY, Zheng GZ, Chang B, et al. Naringin stimulates osteogenic differentiation of rat bone marrow stromal cells via activation of the Notch signaling pathway[J]. Stem Cells Int, 2016, 2016: 7130653. |
10 | 孟春力. 骨碎补提取物调节成骨细胞活性、增殖及相关基因表达的实验研究[J]. 海南医学院学报, 2017, 23(8): 1023-1026. |
Meng CL. Rhizome drynariae extract regulates osteoblast viability and proliferation as well as related gene expression: an experimental study[J]. J Hainan Med Univ, 2017, 23(8): 1023-1026. | |
11 | 李晋玉, 俞兴, 姜俊杰, 等. 骨碎补总黄酮联合纳米骨材料促进MC3T3-E1细胞的增殖分化[J]. 中国组织工程研究, 2020, 24(7): 1030-1036. |
Li JY, Yu X, Jiang JJ, et al. Promoting effect of osteopractic total flavone combined with nano-bone materials on proliferation and differentiation of MC3T3-E1 cells[J]. Chin J Tissue Eng Res, 2020, 24(7): 1030-1036. | |
12 | Li SY, Zhou HL, Hu C, et al. Total flavonoids of rhizoma drynariae promotes differentiation of osteoblasts and growth of bone graft in induced membrane partly by activating Wnt/β‑catenin signaling pathway[J]. Front Pharmacol, 2021, 12: 675470. |
13 | Song SH, Zhai YK, Li CQ, et al. Effects of total flavonoids from drynariae rhizoma prevent bone loss in vivo and in vitro [J]. Bone Rep, 2016, 5: 262-273. |
14 | Xu T, Wang L, Tao Y, et al. The function of naringin in inducing secretion of osteoprotegerin and inhibi-ting formation of osteoclasts[J]. Evid Based Complement Alternat Med, 2016, 2016: 8981650. |
15 | Lin HX, Wang XT, Li ZG, et al. Total flavonoids of Rhizoma drynariae promote angiogenesis and osteogenesis in bone defects[J]. Phytother Res, 2022, 36(9): 3584-3600. |
16 | Hu YM, Mu PY, Ma X, et al. Rhizoma drynariae total flavonoids combined with calcium carbonate ameliorates bone loss in experimentally induced osteoporosis in rats via the regulation of Wnt3a/β‑ catenin pathway[J]. J Orthop Surg Res, 2021, 16(1): 702. |
17 | Chen GY, Chen JQ, Liu XY, et al. Total flavonoids of rhizoma drynariae restore the MMP/TIMP ba-lance in models of osteoarthritis by inhibiting the activation of the NF-κB and PI3K/AKT pathways[J]. Evid Based Complement Alternat Med, 2021, 2021: 6634837. |
18 | Chen GY, Liu XY, Chen JQ, et al. Prediction of rhizoma drynariae targets in the treatment of osteoarthritis based on network pharmacology and experimental verification[J]. Evid Based Complement Alternat Med, 2021, 2021: 5233462. |
19 | Chen GY, Luo J, Liu Y, et al. Network pharmacology analysis and experimental validation to investigate the mechanism of total flavonoids of rhizoma drynariae in treating rheumatoid arthritis[J]. Drug Des Devel Ther, 2022, 16: 1743-1766. |
20 | Dai Z. Study on the protective effect and mechanism of the rhizoma drynariae-epimedium formula on osteoarthritis in rats[J]. Contrast Media Mol I-maging, 2022, 2022: 2869707. |
21 | Kramer CD, Genco CA. Microbiota, immune subversion, and chronic inflammation[J]. Front Immunol, 2017, 8: 255. |
22 | 周渊. Hedgehog在柚皮苷促进人牙周膜干细胞成骨分化中的机制研究[D]. 济南: 山东大学, 2019. |
Zhou Y. Mechanism of Hedgehog in naringin promoting osteogenic differentiation of human perio-dontal ligament stem cells[D]. Jinan: Shandong University, 2019. | |
23 | Xu YZ, Wu JJ, Chen YP, et al. The use of zein and Shuanghuangbu for periodontal tissue engineering[J]. Int J Oral Sci, 2010, 2(3): 142-148. |
24 | Afifi MM, Kotry GS, El-Kimary GI, et al. Immunohistopathologic evaluation of Drynaria fortunei rhizome extract in the management of Class Ⅱ furcation defects in a canine model[J]. J Periodontol, 2018, 89(11): 1362-1371. |
25 | Chen LL, Lei LH, Ding PH, et al. Osteogenic effect of drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model[J]. Arch Oral Biol, 2011, 56(12): 1655-1662. |
26 | 曾辉, 赵许兵, 李子夏, 等. 骨碎补总黄酮对牙周炎大鼠龈沟液骨钙素及牙槽骨骨密度的影响[J]. 贵州医药, 2016, 40(5): 460-462. |
Zeng H, Zhao XB, Li ZX, et al. Effect of rhizoma drynariae Flavone on the sulcular fluid level of osteocalcin and alveolar bone mineral density in pe-riodontitis rats[J]. Guizhou Med J, 2016, 40(5): 460-462. | |
27 | 许立硕, 黄玉, 金权, 等. 野菊花骨碎补复合中药制剂联合奥硝唑治疗慢性牙周炎的效果评价[J]. 吉林大学学报(医学版), 2019, 45(5): 1128-1133. |
Xu LS, Huang Y, Jin Q, et al. Evaluation on effect of compound Chinese medicine preparation of wild chrysanthemum and rhizome drynariae combined with ornidazole in treatment of chronic periodontitis[J]. J Jilin Univ (Med Ed), 2019, 45(5): 1128-1133. | |
28 | Pinto AS, Alves LS, Maltz M, et al. Does the duration of fixed orthodontic treatment affect caries activity among adolescents and young adults[J]. Ca-ries Res, 2018, 52(6): 463-467. |
29 | Hoffmann S, Papadopoulos N, Visel D, et al. Inf-luence of piezotomy and osteoperforation of the alveolar process on the rate of orthodontic tooth movement: a systematic review[J]. J Orofac Orthop, 2017, 78(4): 301-311. |
30 | Singh A, Gill G, Kaur H, et al. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review[J]. Prog Orthod, 2018, 19(1): 18. |
31 | Dhenain T, Côté F, Coman T. Serotonin and ortho-dontic tooth movement[J]. Biochimie, 2019, 161: 73-79. |
32 | Yi J, Xiao J, Li H, et al. Effectiveness of adjunctive interventions for accelerating orthodontic tooth movement: a systematic review of systematic reviews[J]. J Oral Rehabil, 2017, 44(8): 636-654. |
33 | 宋佳, 赵刚, 宋春蕾. 骨碎补对牙周炎大鼠正畸牙移动保持阶段RANKL表达影响的研究[J]. 医学信息, 2019(4): 85-87. |
Song J, Zhao G, Song CL. Effect of drynaria on the expression of RANKL in the period of orthodontic tooth movement in rats with periodontitis[J]. Med Inform, 2019(4): 85-87. | |
34 | 丛淑敏, 王旭霞, 曾婧, 等. 灌服中药骨碎补、丹参对大鼠正畸牙移动过程中骨密度的影响[J]. 上海口腔医学, 2012, 21(4): 361-365. |
Cong SM, Wang XX, Zeng J, et al. Effect of rhizoma drynariae and Salvia on alveolar bone density of rats with orthodontic tooth movement[J]. Shanghai J Stomat, 2012, 21(4): 361-365. | |
35 | 黄敏, 赵磊, 何丽明, 等. 中药骨碎补对大鼠正畸牙移动影响的初步研究[J]. 基层医学论坛, 2022, 26(4): 1-4. |
Huang M, Zhao L, He LM, et al. Preliminary study on effects of drynaria fortunei on rats with orthodontic tooth movement[J]. Medical Forum, 2022, 26(4): 1-4. | |
36 | Elani HW, Starr JR, Da Silva JD, et al. Trends in dental implant use in the US, 1999-2016, and projections to 2026[J]. J Dent Res, 2018, 97(13): 1424-1430. |
37 | Lin FX, Du SX, Liu DZ, et al. Naringin promotes osteogenic differentiation of bone marrow stromal cells by up-regulating Foxc2 expression via the IHH signaling pathway[J]. Am J Transl Res, 2016, 8(11): 5098-5107. |
38 | 李德超, 李慕勤, 朱杨, 等. 微弧氧化处理的钛合金种植体的表面处理[C]//中华口腔医学会口腔材料专业委员会. 中华口腔医学会口腔材料专业委员会第九次全国口腔材料学术交流会论文集. 大连:中华口腔医学会口腔材料专业委员会, 2014: 56-57. |
Li DC, Li MQ, Zhu Y, et al. Surface treatment of titanium alloy implants treated by micro arc oxidation[C]//Chinese Society of Dental Material Science. Proceedings of the ninth National Oral Materials A-cademic Exchange Meeting of Chinese Society of Dental Material Science. Dalian: Chinese Society of Dental Material Science, 2014: 56-57. | |
39 | 彭书浩, 李慕勤, 王晶彦, 等. 纯钛表面载骨碎补提取物涂层的制备与性能[J]. 稀有金属材料与工程, 2019(6): 1921-1928. |
Peng SH, Li MQ, Wang JY, et al. Preparation and property of coatings carrying extract of rhizoma drynariae on the surface of pure titanium[J]. Rare Met Mater Eng, 2019(6): 1921-1928. | |
40 | 王树琪, 李玉娇, 耿建欣, 等. 纯钛-骨补碎-生物复合涂层的研究[J]. 佳木斯大学学报(自然科学版), 2020, 38(6): 88-90. |
Wang SQ, Li YJ, Geng JX, et al. Study on pure titanium-drynariae and biological composite coating[J]. J Jiamusi Univ (Nat Sci Ed), 2020, 38(6): 88-90. | |
41 | Kudkuli J, Agrawal A, Gurjar OP, et al. Deminera-lization of tooth enamel following radiation therapy; an in vitro microstructure and microhardness analysis[J]. J Cancer Res Ther, 2020, 16(3): 612-618. |
42 | Ricucci D, Siqueira JF Jr, Abdelsayed RA, et al. Bacterial invasion of pulp blood vessels in teeth with symptomatic irreversible pulpitis[J]. J Endod, 2021, 47(12): 1854-1864. |
43 | Luo XT, Wan QX, Cheng L, et al. Mechanisms of bone remodeling and therapeutic strategies in chro-nic apical periodontitis[J]. Front Cell Infect Micro-biol, 2022, 12: 908859. |
44 | Rajendra Santosh AB. Odontogenic cysts[J]. Dent Clin North Am, 2020, 64(1): 105-119. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[4] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[5] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[6] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[7] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[8] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[9] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[10] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[11] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[12] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[13] | 赵喆,王富,郑秀丽,安娜,陈吉华. 功能载荷下牙移动测量方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 362-366. |
[14] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[15] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
|