国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (6): 669-673.doi: 10.7518/gjkq.2023083

• 论著 • 上一篇    下一篇

Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察

孙旭1(),邓振南2,文才3,赵颖1()   

  1. 1.首都医科大学宣武医院口腔科 北京 100053
    2.温州医科大学附属口腔医院修复科 温州 325000
    3.西南医科大学口颌面修复重建和再生实验室 西南医科大学附属口腔医院种植科 泸州 646000
  • 收稿日期:2023-02-06 修回日期:2023-06-11 出版日期:2023-11-01 发布日期:2023-10-24
  • 通讯作者: 赵颖
  • 作者简介:孙旭,主治医师,博士,Email:sunxu198501@163.com
  • 基金资助:
    首都医科大学宣武医院院内基金(2018—2022)

Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope

Sun Xu1(),Deng Zhennan2,Wen Cai3,Zhao Ying1()   

  1. 1.Dept. of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
    2.Dept. of Prosthodontics, Affiliated Stomatological Hospital of Wenzhou Medical University, Wenzhou 325000, China
    3.Dept. of Implant and Prosthodontics, Affiliated Stomatological Hospital, Southwest Medical University, Laboratory of Orofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou 646000, China
  • Received:2023-02-06 Revised:2023-06-11 Online:2023-11-01 Published:2023-10-24
  • Contact: Ying Zhao
  • Supported by:
    Xuanwu Hospital Capital Medical University In-hospital Fund (2018-2022)

摘要:

目的 探讨Er: YAG激光不同模式、不同参数照射对种植体SA、SLA、Xpeed及RBM表面微形貌的影响。 方法 选择波长为2 940 nm的Er: YAG激光并设置为软组织模式及参数50 mJ、10 Hz,100 mJ、10 Hz,200 mJ、10 Hz;设置硬组织模式及参数100 mJ、10 Hz,200 mJ、10 Hz。均在水冷却环境下,采取非接触模式,工作尖距离种植体表面1 mm,对SA、SLA、Xpeed及RBM 4种种植体表面固定一点照射5 s。用扫描电子显微镜(SEM)观察照射前后表面微形貌的变化。 结果 SEM观察可见,SA表面在软组织模式50 mJ、10 Hz及100 mJ、10 Hz照射下无变化,能量提高到200 mJ、10 Hz可见表面微形貌部分熔化;SLA表面在软组织模式50 mJ、10 Hz照射下无变化,能量提高到100 mJ、10Hz及200 mJ、10 Hz可见表面部分熔化及完全熔化;SA及SLA表面在硬组织模式100 mJ、10 Hz或200 mJ、10 Hz照射下,表面无变化。Xpeed和RBM表面在软组织模式50 mJ、10 Hz照射下分别表现为高峰塌陷和片状熔化;在能量提高到100 mJ、10 Hz及200 mJ、10 Hz均可见部分熔化及完全熔化;Xpeed及RBM表面在硬组织模式100 mJ、10 Hz照射下无变化,能量提高到200 mJ、10 Hz可见部分熔化;Xpeed表面未见涂层剥脱。 结论 本研究显示,在用Er: YAG激光处理种植体表面时,为避免对种植体表面造成损伤,SA和SLA表面用软组织模式时能量参数需设置在50 mJ、10 Hz以下,硬组织模式时参数设置200 mJ、10 Hz以下。Xpeed及RBM表面不适合用软组织模式处理,可在硬组织模式100 mJ、10 Hz以下处理。

关键词: Er: YAG激光, 种植体, 微形貌, 表面处理

Abstract:

Objective This work aimed to investigate the effects of Er: YAG laser irradiation with different modes and parameters on the micromorphology of implant SA, SLA, Xpeed, and RBM surfaces. Methods An Er: YAG laser with wavelength of 2 940 nm was selected under the soft tissue mode (parameter settings of 50 mJ, 10 Hz; 100 mJ, 10 Hz; and 200 mJ, 10 Hz) and hard tissue mode (parameter settings of 100 mJ, 10 Hz and 200 mJ, 10 Hz). Under water cooling with the non-contact mode, the working tip was 1 mm away from the surface of the implants. One point on SA, SLA, Xpeed, and RBM surfaces was irradiated for 5 s. Micromorphological changes of the surfaces before and after laser irradiation were observed under scanning electron microscope (SEM). Results Under SEM observation, for the SA surface in the soft tissue mode, no change was observed under irradiation at 50 mJ, 10 Hz and 100 mJ, 10 Hz. When the energy was increased to 200 mJ, 10 Hz, the micromorphology of the surface was partially melted. For the SLA surface in the soft tissue mode, no change was noted under 50 mJ, 10 Hz irradiation. When the energy was increased to 100 mJ, 10 Hz and 200 mJ, 10 Hz, partial melting and complete melting were observed, respectively. For the SA and SLA surfaces, no changes were observed under the hard tissue mode with 100 mJ, 10 Hz and 200 mJ, 10 Hz irra-diation. For the Xpeed surface and RBM surface in the soft tissue mode under 50 mJ, 10 Hz irradiation, the surface peak collapsed and melted flakily, respectively. When the energy was increased to 100 mJ, 10 Hz and 200 mJ, 10 Hz, partial melting and complete melting were observed on both surfaces, respectively. For the Xpeed surface and RBM surface, no change was observed under 100 mJ, 10 Hz irradiation in the hard tissue mode, whereas partial melting was observed when the energy increased to 200 mJ, 10 Hz. No coating peeling was observed on the Xpeed surface. Conclusion When trea-ting implant surfaces with Er: YAG laser, the energy parameters should be set below 50 mJ, 10 Hz in the soft tissue mode and below 200 mJ, 10 Hz in the hard tissue mode for the SA and SLA surfaces to avoid damage to the implant surface. The soft tissue mode was not suitable for the Xpeed and RBM surfaces, but they could be treated below 100 mJ, 10 Hz in the hard tissue mode.

Key words: Er: YAG laser, implant, micromorphology, surface treatment

中图分类号: 

  • R 783.1

图 1

Er: YAG激光处理种植体表面后SEM观察"

1 Subramani K, Jung RE, Molenberg A, et al. Biofilm on dental implants: a review of the literature[J]. Int J Oral Maxillofac Implants, 2009, 24(4): 616-626.
2 Renvert S, Polyzois I, Maguire R. Re-osseointegration on previously contaminated surfaces: a syste-matic review[J]. Clin Oral Implants Res, 2009, 20(): 216-227.
3 Trejo PM, Bonaventura G, Weng D, et al. Effect of mechanical and antiseptic therapy on peri-implant mucositis: an experimental study in monkeys[J]. Clin Oral Implants Res, 2006, 17(3): 294-304.
4 Mizutani K, Aoki A, Coluzzi D, et al. Lasers in mi-nimally invasive periodontal and peri-implant therapy[J]. Periodontol 2000, 2016, 71(1): 185-212.
5 Taniguchi Y, Aoki A, Mizutani K, et al. Optimal Er: YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants[J]. Lasers Med Sci, 2013, 28(4): 1057-1068.
6 Lafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review[J]. J Periodontol, 2017, 88(10): 1066-1089.
7 Sezin M, Croharé L, Ibañez JC. Microscopic study of surface microtopographic characteristics of dental implants[J]. Open Dent J, 2016, 10: 139-147.
8 Stubinger S, Etter C, Miskiewicz M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er: YAG, carbon dioxide, and diode laser irradiation[J]. Int J Oral Ma-xillofac Implants, 2010, 25(1): 104-111.
9 梁辰, 赖穗萍, 王小静, 等. Er: YAG激光照射对SLA及SLActive种植体表面结构变化的体外研究[J]. 中华老年口腔医学杂志, 2020, 18(3): 158-162.
Liang C, Lai SP, Wang XJ, et al. Surface alterations of sandblasted and acid-etched (SLA) and chemical modified sandblasted and acid-etched (SLActive) titanium implants after Er: YAG laser irradiation in vitro [J]. Chin J Geriatr Dent, 2020, 18(3): 158-162.
10 陈中仁, 陈雪, 彭琳. Er: YAG激光治疗种植体周围炎的基础研究进展[J]. 临床口腔医学杂志, 2021, 37(3): 188-191.
Chen ZR, Chen X, Peng L. Basic research progress of Er: YAG laser in the treatment of peri-implant in-flammation[J]. J Clin Stomatol, 2021, 37(3): 188-191.
11 魏雅楠, 陈筠, 李志艳. Er: YAG激光对恒牙牙本质粘接性能的影响[J]. 口腔疾病防治, 2020, 28(10): 673-676.
Wei YN, Chen Y, Li ZY. Effect of Er: YAG laser irradiation on the bonding strength of permanent teeth[J]. J Prev Treat Stomatol Dis, 2020, 28(10): 673-676.
12 Nasirzade J, Kargarpour Z, Hasannia S, et al. Platelet-rich fibrin elicits an anti-inflammatory response in macrophages in vitro [J]. J Periodontol, 2020, 91(2): 244-252.
13 Nakamura M, Aizawa H, Kawabata H, et al. Platelet adhesion on commercially pure titanium plates in vitro Ⅲ: effects of calcium phosphate-blasting on titanium plate biocompatibility[J]. Int J Implant Dent, 2020, 6(1): 74.
14 Zinelis S, Silikas N, Thomas A, et al. Surface cha-racterization of SLActive dental implants[J]. Eur J Esthet Dent, 2012, 7(1): 72-92.
15 Son WW, Zhu XL, Shin HI, et al. In vivo histological response to anodized and anodized/hydrothermally treated titanium implants[J]. J Biomed Mater Res B Appl Biomater, 2003, 66(2): 520-525.
16 穆月, 李倩, 赵继志. 激光在口腔种植中的应用[J]. 中国医学科学院学报, 2014, 36(5): 560-564.
Mu Y, Li Q, Zhao JZ. Applications of lasers in dental implantology[J]. Acta Acad Med Sin, 2014, 36(5): 560-564.
[1] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[2] 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551.
[3] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[4] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[5] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[6] 章善,沈树平,张舫,杨卫东. Er: YAG激光光子激活光声流技术对根管壁牙本质失水状况及牙根抗压强度的影响[J]. 国际口腔医学杂志, 2022, 49(1): 55-59.
[7] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384.
[8] 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490.
[9] 路泊遥,杨大维,刘蔚晴,梁星. 超短种植体临床应用效果的影响因素[J]. 国际口腔医学杂志, 2021, 48(3): 329-328.
[10] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[11] 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731.
[12] 童子安,姒蜜思. 种植体表面菌斑去污方式的体外研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 589-594.
[13] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[14] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[15] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .