国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (4): 473-483.doi: 10.7518/gjkq.2025062
姚曼曼(),仇永乐(
),刘铁军,路月亭,路华林,尚宏悦,董博
Manman Yao(),Yongle Qiu(
),Tiejun Liu,Yueting Lu,Hualin Lu,Hongyue Shang,Bo Dong
摘要:
目的 基于公共数据库探索微小RNA(miRNA)200a/141、信号转导和转录激活因子4(STAT4)在口腔鳞状细胞癌(OSCC)中的表达及临床意义并构建预后模型,探讨其作为潜在治疗靶点的可行性。通过体外实验验证仿生明胶外泌体颗粒递送miRNA200a/141进而调节STAT4,评估在OSCC的细胞和分子水平上的核酸保护能力及抗癌作用。 方法 通过癌症基因组图谱数据库下载OSCC相关miRNA及信使RNA表达测序数据,使用R语言进行数据分析,评估miRNA200a/141与STAT4的表达水平和临床相关性。制备负载miRNA200a/141的仿生明胶外泌体纳米颗粒(GNP-EXO-miRNA200a/141),进行Transwell迁移、细胞划痕和四甲基偶氮唑蓝实验,评估纳米颗粒对SCC25细胞的作用,并通过定量聚合酶链式反应和蛋白质免疫印迹法检测其对SCC25细胞中STAT4表达的影响。 结果 miRNA200a/141在OSCC组织中的表达水平显著降低,而其靶标STAT4的表达水平升高,两者呈负相关。制备的GNP-EXO-miRNA200a/141纳米颗粒具有良好的粒径分布和稳定性。在细胞实验中,GNP-EXO-miRNA200a/141显著抑制了SCC25细胞的增殖和迁移,并显著下调了STAT4的表达。 结论 miRNA200a/141通过调节STAT4在OSCC中发挥重要作用,其有望成为OSCC的诊断、治疗和预后的潜在的分子标志物和治疗靶点。
中图分类号:
1 | Coletta RD, Yeudall WA, Salo T. Grand challenges in oral cancers[J]. Front Oral Health, 2020, 1: 3. |
2 | Romano A, Di Stasio D, Petruzzi M, et al. Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: state of the art and proposal of a three-step diagnostic process[J]. Cancers (Basel), 2021, 13(12): 2864. |
3 | Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine[J]. Wiley Interdiscip Rev RNA, 2021, 12(6): e1662. |
4 | Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222. |
5 | Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition[J]. Eur J Pharmacol, 2019, 857: 172426. |
6 | Xue L, Yu X, Jiang X, et al. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141[J]. Oncotarget, 2017, 8(12): 19274-19284. |
7 | Dong H, Weng C, Bai R, et al. The regulatory network of miR-141 in the inhibition of angiogenesis[J]. Angiogenesis, 2019, 22(2): 251-262. |
8 | Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer[J]. Nature, 2014, 509(7498): 91-95. |
9 | Li CX, Su Y, Wang ZY, et al. A PRISMA meta-ana-lysis for diagnostic value of microRNA-21 in head and neck squamous cell carcinoma along with bioinformatics research[J]. Oral Maxillofac Surg, 2024, 28(2): 739-752. |
10 | Kiran K, Chowdhury N, Singh A, et al. The relationship of grade, stage and tobacco usage in head and neck squamous cell carcinoma with p53, PIK3CA and microRNA profiles[J]. Cureus, 2024, 16(2): e54737. |
11 | Banwait JK, Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics[J]. Adv Drug Deliv Rev, 2015, 81: 94-103. |
12 | Chen S, Zhang J, Chen Q, et al. MicroRNA-200a and microRNA-141 have a synergetic effect on the suppression of epithelial-mesenchymal transition in liver cancer by targeting STAT4[J]. Oncol Lett, 2021, 21(2): 137. |
13 | Anderson K, Ryan N, Volpedo G, et al. Immune suppression mediated by STAT4 deficiency promotes lymphatic metastasis in HNSCC[J]. Front Immunol, 2020, 10: 3095. |
14 | Brozovic A, Duran GE, Wang YC, et al. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells[J]. Mol Oncol, 2015, 9(8): 1678-1693. |
15 | Li Y, Wang J, Chen W, et al. Overexpression of STAT4 under hypoxia promotes EMT through miR-200a/STAT4 signal pathway[J]. Life Sci, 2021, 273: 119263. |
16 | Tan Y, Wang Z, Xu M, et al. Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1): 44. |
17 | Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma[J]. Semin Cancer Biol, 2020, 61: 71-83. |
18 | Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336. |
19 | Lee JS, Ahn YH, Won HS, et al. Prognostic role of the microRNA-200 family in various carcinomas: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 1928021. |
20 | Zhang Z, Li H, Jiang S, et al. A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data[J]. Brief Bioinform, 2019, 20(4): 1524-1541. |
21 | Cong Y, Baimanov D, Zhou Y, et al. Penetration and translocation of functional inorganic nanomaterials into biological barriers[J]. Adv Drug Deliv Rev, 2022, 191: 114615. |
22 | Zhang Y, Zhang Y, Ma C, et al. Gelatin nanoparticles transport DNA probes for detection and ima-ging of telomerase and microRNA in living cells[J]. Talanta, 2020, 218: 121100. |
23 | Zhang CY, Yang CQ, Chen Q, et al. miR-194-loa-ded gelatin nanospheres target MEF2C to suppress muscle atrophy in a mechanical unloading model[J]. Mol Pharm, 2021, 18(8): 2959-2973. |
24 | Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy[J]. Drug Deliv Transl Res, 2023, 13(11): 2790-2806. |
25 | Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential[J]. J Cancer Res Clin Oncol, 2021, 147(3): 637-648. |
26 | Ngu A, Wang S, Wang H, et al. Milk exosomes in nutrition and drug delivery[J]. Am J Physiol Cell Physiol, 2022, 322(5): C865-C874. |
27 | Hofmann L, Waizenegger M, Röth R, et al. Treatment dependent impact of plasma-derived exosomes from head and neck cancer patients on the epithelial-to-mesenchymal transition[J]. Front Oncol, 2023, 12: 1043199. |
28 | Mirzaei S, Gholami MH, Aghdaei HA, et al. Exosome-mediated miR-200a delivery into TGF-β-trea-ted AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression[J]. Environ Res, 2023, 231(Pt 1): 116115. |
29 | Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nat Commun, 2021, 12(1): 4389. |
30 | Bose A, Ghosh D, Pal S, et al. Interferon alpha2b augments suppressed immune functions in tobacco-related head and neck squamous cell carcinoma patients by modulating cytokine signaling[J]. Oral Oncol, 2006, 42(2): 161-171. |
[1] | 王倩,彭晖,章礼玉,杨宗澄,王雨琪,潘宇,周瑜. 影像组学在口腔鳞状细胞癌颈部淋巴结转移方面的应用进展[J]. 国际口腔医学杂志, 2025, 52(4): 507-513. |
[2] | 李熠洁,原振英,李明. 支链氨基酸转氨酶1在口腔鳞状细胞癌中的表达及其功能研究[J]. 国际口腔医学杂志, 2025, 52(3): 358-365. |
[3] | 买克里亚·艾克帕尔,买买提吐逊·吐尔地. 吲哚菁绿荧光显影技术在口腔鳞状细胞癌手术治疗中的应用进展[J]. 国际口腔医学杂志, 2025, 52(3): 405-410. |
[4] | 卢妍蓓,李正娟,雷蕾,罗晶晶. 磷脂酰肌醇3激酶相关放射抵抗机制在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 246-256. |
[5] | 李京哲, 张素欣. 磷脂酰肌醇3-激酶/蛋白激酶B通路抑制剂在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 34-41. |
[6] | 陆慧,郑烨新,赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474. |
[7] | 陈三,杨润泽,吴家媛. 经脂多糖和低氧预处理来源的外泌体在组织修复再生中的作用研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 256-264. |
[8] | 李冰芷, 刘云坤, 王文轩, 侯泽宇, 唐金茹, 李龙江. 口腔鳞状细胞癌嗜神经侵袭的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 362-367. |
[9] | 王文轩,刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江. 晚期糖基化终产物在口腔鳞状细胞癌发展及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 208-216. |
[10] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[11] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[12] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[13] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[14] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[15] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
|