国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (4): 507-513.doi: 10.7518/gjkq.2025076
Qian Wang(),Hui Peng,Liyu Zhang,Zongcheng Yang,Yuqi Wang,Yu Pan,Yu Zhou(
)
摘要:
口腔鳞状细胞癌(OSCC)是口腔颌面部最常见的恶性肿瘤。在制定该疾病的治疗方案时,正确评估颈部淋巴结的分期至关重要。准确的临床分期可以避免不必要的颈淋巴结清扫术以及术后并发症。利用传统的影像学技术评估淋巴结性质时,主要依靠淋巴结的大小和形态进行评估,存在主观偏向性。为了提供更加客观准确的数据,影像组学将图像转换为可由软件处理的定量变量。通过应用影像组学技术,医生能够利用定量的数据来评估淋巴结的性质,并根据这些结果制定更个性化的治疗方案。本文综述了影像组学在OSCC颈部淋巴结转移方面的应用。
中图分类号:
1 | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer[J]. Nat Rev Cancer, 2011, 11(1): 9-22. |
3 | Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions[J]. J Clin Oncol, 2015, 33(29): 3269-3276. |
4 | Pantel K, Brakenhoff RH. Dissecting the metastatic cascade[J]. Nat Rev Cancer, 2004, 4(6): 448-456. |
5 | Feng ZE, Li JN, Li CZ, et al. Elective neck dissection versus observation in the management of early tongue carcinoma with clinically node-negative neck: a retrospective study of 229 cases[J]. J Craniomaxillofac Surg, 2014, 42(6): 806-810. |
6 | Arain AA, Rajput MSA, Ansari SA, et al. Occult nodal metastasis in oral cavity cancers[J]. Cureus, 2020, 12(11): e11640. |
7 | Vassiliou LV, Acero J, Gulati A, et al. Management of the clinically N0 neck in early-stage oral squamous cell carcinoma (OSCC). An EACMFS position paper[J]. J Craniomaxillofac Surg, 2020, 48(8): 711-718. |
8 | Rathod R, Bakshi J, Panda NK, et al. Can sentinel lymph node biopsy predict various levels of echelon nodes in oral cancers[J]. Int Arch Otorhinolaryngol, 2020, 24(2): e125-e131. |
9 | Van den Brekel MW, Leemans CR, Snow GB. Assessment and management of lymph node metastases in the neck in head and neck cancer patients[J]. Crit Rev Oncol Hematol, 1996, 22(3): 175-182. |
10 | Oh LJ, Phan K, Kim SW, et al. Elective neck dissection versus observation for early-stage oral squamous cell carcinoma: systematic review and meta-analysis[J]. Oral Oncol, 2020, 105: 104661. |
11 | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. |
12 | van den Brekel MW, Castelijns JA, Stel HV, et al. Modern imaging techniques and ultrasound-guided aspiration cytology for the assessment of neck node metastases: a prospective comparative study[J]. Eur Arch Otorhinolaryngol, 1993, 250(1): 11-17. |
13 | Sun R, Tang XY, Yang Y, et al. 18FDG-PET/CT for the detection of regional nodal metastasis in patients with head and neck cancer: a meta-analysis[J]. Oral Oncol, 2015, 51(4): 314-320. |
14 | de Bree R, Takes RP, Castelijns JA, et al. Advances in diagnostic modalities to detect occult lymph node metastases in head and neck squamous cell carcinoma[J]. Head Neck, 2015, 37(12): 1829-1839. |
15 | Kinner S, Maderwald S, Albert J, et al. Discrimination of benign and malignant lymph nodes at 7.0T compared to 1.5T magnetic resonance imaging u-sing ultrasmall particles of iron oxide: a feasibility preclinical study[J]. Acad Radiol, 2013, 20(12): 1604-1609. |
16 | Fong ZV, Tan WP, Lavu H, et al. Preoperative ima-ging for resectable periampullary cancer: clinicopa-thologic implications of reported radiographic fin-dings[J]. J Gastrointest Surg, 2013, 17(6): 1098-1106. |
17 | 司呈云, 刘梦秋, 翁海燕, 等. MRI测量和评估口腔黏膜鳞状细胞癌临床分期指标的准确性分析[J]. 中国口腔颌面外科杂志, 2023, 21(4): 390-396. |
Si CY, Liu MQ, Weng HY, et al. Accuracy of MRI to measure and evaluate clinical staging of oral squamous cell carcinoma[J]. Chin J Oral Maxillofac Surg, 2023, 21(4): 390-396. | |
18 | Gillies RJ, Kinahan PE, Hricak H. Radiomics: ima-ges are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. |
19 | van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging- “how-to” guide and critical reflection[J]. Insights Imaging, 2020, 11(1): 91. |
20 | Park H, Lim Y, Ko ES, et al. Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer[J]. Clin Cancer Res, 2018, 24(19): 4705-4714. |
21 | Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. |
22 | Li X, Yang LF, Jiao X. Comparison of traditional radiomics, deep learning radiomics and fusion me-thods for axillary lymph node metastasis prediction in breast cancer[J]. Acad Radiol, 2023, 30(7): 1281-1287. |
23 | Currie G, Rohren E. The deep radiomic analytics pipeline[J]. Vet Radiol Ultrasound, 2022, 63(): 889-896. |
24 | McCague C, Ramlee S, Reinius M, et al. Introduction to radiomics for a clinical audience[J]. Clin Radiol, 2023, 78(2): 83-98. |
25 | Xia TY, Zhao B, Li BR, et al. MRI-based radiomics and deep learning in biological characteristics and prognosis of hepatocellular carcinoma: opportunities and challenges[J]. J Magn Reson Imaging, 2024, 59(3): 767-783. |
26 | Han XY, Wang ML, Zheng YT, et al. Delta-radiomics features for predicting the major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer[J]. Eur Radiol, 2024, 34(4): 2716-2726. |
27 | Malhaire C. Radiomics in 18F-FDG PET/CT predicts HER2 status in breast cancer with equivocal immunohistochemistry[J]. Eur J Radiol, 2024, 170: 111238. |
28 | Li X, Wu M, Wu M, et al. A radiomics and geno-mics-derived model for predicting metastasis and prognosis in colorectal cancer[J]. Carcinogenesis, 2024, 45(3): 170-180. |
29 | Geng XT, Zhang YP, Li Y, et al. Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma[J]. Br J Radiol, 2024, 97(1155): 652-659. |
30 | Elmahdy M, Sebro R. Radiomics analysis in medical imaging research[J]. J Med Radiat Sci, 2023, 70(1): 3-7. |
31 | Jubair F, Al-Karadsheh O, Malamos D, et al. A no-vel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022, 28(4): 1123-1130. |
32 | Ling X, Alexander GS, Molitoris J, et al. Identification of CT-based non-invasive radiographic biomarkers for overall survival stratification in oral cavity squamous cell carcinoma[J]. Res Sq, 2023: rs.3.rs-rs.3263887. |
33 | Yu Q, Ning YQ, Wang AR, et al. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study[J]. Eur Radiol, 2023, 33(9): 6054-6065. |
34 | Zheng ML, Chen Q, Ge YQ, et al. Development and validation of CT-based radiomics nomogram for the classification of benign parotid gland tumors[J]. Med Phys, 2023, 50(2): 947-957. |
35 | Committeri U, Fusco R, Di Bernardo E, et al. Radiomics metrics combined with clinical data in the surgical management of early-stage (cT1-T2 N0) tongue squamous cell carcinomas: a preliminary study[J]. Biology, 2022, 11(3): 468. |
36 | Kubo K, Kawahara D, Murakami Y, et al. Development of a radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2022, 134(1): 93-101. |
37 | Tomita H, Yamashiro T, Heianna J, et al. Nodal-based radiomics analysis for identifying cervical lymph node metastasis at levels Ⅰ and Ⅱ in patients with oral squamous cell carcinoma using contrast-enhanced computed tomography[J]. Eur Ra-diol, 2021, 31(10): 7440-7449. |
38 | Chen Z, Yu Y, Liu S, et al. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma[J]. Clin Oral Investig, 2023, 28(1): 39. |
39 | Angelelli G, Moschetta M, Limongelli L, et al. Endocavitary sonography of early oral cavity malignant tumors[J]. Head Neck, 2017, 39(7): 1349-1356. |
40 | Baba A, Okuyama Y, Ikeda K, et al. Undetectability of oral tongue cancer on magnetic resonance ima-ging; clinical significance as a predictor to avoid unnecessary elective neck dissection in node negative patients[J]. Dentomaxillofac Radiol, 2019, 48(3): 20180272. |
41 | Liu JJ, Song LN, Zhou JR, et al. Prediction of prognosis of tongue squamous cell carcinoma based on clinical MR imaging data modeling[J]. Technol Cancer Res Treat, 2023, 22: 15330338231207006. |
42 | Park YM, Lim JY, Koh YW, et al. Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment[J]. Oral Oncol, 2021, 122: 105559. |
43 | Ren JL, Qi M, Yuan Y, et al. Radiomics of apparent diffusion coefficient maps to predict histologic grade in squamous cell carcinoma of the oral tongue and floor of mouth: a preliminary study[J]. Acta Radiol, 2021, 62(4): 453-461. |
44 | Romeo V, Cuocolo R, Ricciardi C, et al. Prediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approach[J]. Anticancer Res, 2020, 40(1): 271-280. |
45 | Ren JL, Yuan Y, Tao XF. Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2022, 32(4): 2739-2747. |
46 | Yuan Y, Ren JL, Tao XF. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2021, 31(9): 6429-6437. |
47 | Liu S, Zhang AH, Xiong JJ, et al. The application of radiomics machine learning models based on multimodal MRI with different sequence combinations in predicting cervical lymph node metastasis in oral tongue squamous cell carcinoma patients[J]. Head Neck, 2024, 46(3): 513-527. |
48 | Reel PS, Reel S, Pearson E, et al. Using machine learning approaches for multi-omics data analysis: a review[J]. Biotechnol Adv, 2021, 49: 107739. |
[1] | 姚曼曼,仇永乐,刘铁军,路月亭,路华林,尚宏悦,董博. 微小RNA200a/141-信号转导和转录激活因子4轴在口腔鳞状细胞癌进展中的作用研究[J]. 国际口腔医学杂志, 2025, 52(4): 473-483. |
[2] | 李熠洁,原振英,李明. 支链氨基酸转氨酶1在口腔鳞状细胞癌中的表达及其功能研究[J]. 国际口腔医学杂志, 2025, 52(3): 358-365. |
[3] | 买克里亚·艾克帕尔,买买提吐逊·吐尔地. 吲哚菁绿荧光显影技术在口腔鳞状细胞癌手术治疗中的应用进展[J]. 国际口腔医学杂志, 2025, 52(3): 405-410. |
[4] | 卢妍蓓,李正娟,雷蕾,罗晶晶. 磷脂酰肌醇3激酶相关放射抵抗机制在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 246-256. |
[5] | 李京哲, 张素欣. 磷脂酰肌醇3-激酶/蛋白激酶B通路抑制剂在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 34-41. |
[6] | 李冰芷, 刘云坤, 王文轩, 侯泽宇, 唐金茹, 李龙江. 口腔鳞状细胞癌嗜神经侵袭的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 362-367. |
[7] | 王文轩,刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江. 晚期糖基化终产物在口腔鳞状细胞癌发展及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 208-216. |
[8] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[9] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[10] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[11] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[12] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[13] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
[14] | 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470. |
[15] | 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143. |
|