国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (3): 411-418.doi: 10.7518/gjkq.2025054

• 综述 • 上一篇    

Wnt/β-catenin信号通路在味蕾发育和损伤修复中的作用

郑书豪(),李梓瑕,徐欣()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2024-06-14 修回日期:2024-11-07 出版日期:2025-05-01 发布日期:2025-04-30
  • 通讯作者: 徐欣
  • 作者简介:郑书豪,博士,Email:851730340@qq.com
  • 基金资助:
    国家自然科学基金(82370947)

The role of the Wnt/β-catenin signaling pathway in taste bud development and injury reconstruction

Shuhao Zheng(),Zixia Li,Xin Xu()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-14 Revised:2024-11-07 Online:2025-05-01 Published:2025-04-30
  • Contact: Xin Xu
  • Supported by:
    National Natural Science Foundation of China(82370947)

摘要:

Wnt/β-catenin信号通路是哺乳动物调控胚胎发育和组织稳态的重要途径。味蕾作为味觉系统的感受器,产生味觉信号,帮助机体评估食物的毒性和营养成分,对哺乳动物新陈代谢起到重要作用。Wnt/β-catenin信号通路在味蕾的发育和损伤修复过程中发挥了重要的调控作用,并可串话其他信号通路和调控因子,共同参与味蕾和味蕾细胞的稳态维持。本文就Wnt/β-catenin信号通路在味蕾发育和损伤修复中作用的研究进展进行综述,包括Wnt/β-catenin信号通路调控味蕾祖细胞和前体细胞的分化方向、与其他信号通路的协同作用以及维持味蕾的稳态,以期深入了解味蕾发育过程中的关键分子调控机制,为味蕾损伤修复和味觉障碍的防治提供新的思路与策略。

关键词: Wnt/β-catenin信号通路, 味蕾, 味觉细胞, 发育, 损伤修复

Abstract:

The Wnt/β-catenin signaling pathway is a major route by which mammals control embryonic development and tissue homeostasis. The taste buds, a receptor of the taste system, generate taste signals to help the body evaluate the toxicity and nutritional components of food. Thus, taste buds play a vital role in the normal metabolism of mammals. The Wnt/β-catenin signaling pathway plays a crucial regulatory role in the development and reconstruction of taste buds, coordinating with other signaling pathways and regulatory factors to ensure the normal development and homeostasis of taste buds and taste bud cells throughout their life cycle. This review discusses the role of the Wnt/β-catenin signaling pathway in gustatory papilla development and repair. The focus is on the Wnt/β-catenin signaling pathway’s regulation of progenitor and precursor cell differentiation, its interaction with other pathways, and maintenance of homeostasis. New insights into the molecular mechanisms of gustatory papilla development and the prevention and treatment of taste disorders are provided.

Key words: Wnt/β-catenin signaling pathway, taste bud, taste cell, development, injury reconstruction

中图分类号: 

  • R78

图1

Wnt/β-catenin信号通路模式图A: 当靶细胞未接受Wnt信号,β-catenin被降解,Wnt通路受抑制;B:当靶细胞接受到Wnt信号,β-catenin累积入核,Wnt通路被激活。"

图2

轮廓乳头、味蕾和味觉细胞的示意图"

图3

小鼠胚胎中味蕾和舌乳头发育的顺序"

1 Egan JM. Physiological integration of taste and metabolism[J]. N Engl J Med, 2024, 390(18): 1699-1710.
2 Song CY, Wang ZJ, Li HQ, et al. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides[J]. Crit Rev Food Sci Nutr, 2025, 65(4): 695-714.
3 Whiddon ZD, Marshall JB, Alston DC, et al. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover[J]. PLoS Biol, 2023, 21(8): e3002271.
4 郑欣, 徐欣, 何金枝, 等. 哺乳动物味蕾发育与重建的研究现状[J]. 华西口腔医学杂志, 2018, 36(5): 552-558.
Zheng X, Xu X, He JZ, et al. Development and homeostasis of taste buds in mammals[J]. West China J Stomatol, 2018, 36(5): 552-558.
5 Gaillard D, Barlow LA. A mechanistic overview of taste bud maintenance and impairment in cancer therapies[J]. Chem Senses, 2021, 46: bjab011.
6 Morelli I, Desideri I, Romei A, et al. Impact of radia-tion dose on patient-reported acute taste alteration in a prospective observational study cohort in head and neck squamous cell cancer (HNSCC)[J]. Radiol Med, 2023, 128(12): 1571-1579.
7 Barlow LA. The sense of taste: development, regene-ration, and dysfunction[J]. WIREs Mech Dis, 2022, 14(3): e1547.
8 Nusse R, Clevers H. Wnt/β-catenin signaling, di-sease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
9 Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307.
10 Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3.
11 Nygaard R, Yu J, Kim J, et al. Structural basis of WLS/Evi-mediated Wnt transport and secretion[J]. Cell, 2021, 184(1): 194-206.e14.
12 Liu F, Millar SE. Wnt/beta-catenin signaling in oral tissue development and disease[J]. J Dent Res, 2010, 89(4): 318-330.
13 Barlow LA. Progress and renewal in gustation: new insights into taste bud development[J]. Development, 2015, 142(21): 3620-3629.
14 Tam PPL, Loebel DAF. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nat Rev Ge-net, 2007, 8(5): 368-381.
15 Sokol SY. Maintaining embryonic stem cell pluripotency with Wnt signaling[J]. Development, 2011, 138(20): 4341-4350.
16 Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol, 2004, 20: 781-810.
17 Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regenera-tion: Wnt signaling and stem cell control[J]. Scien-ce, 2014, 346(6205): 1248012.
18 Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469-480.
19 Holland JD, Klaus A, Garratt AN, et al. Wnt signa-ling in stem and cancer stem cells[J]. Curr Opin Cell Biol, 2013, 25(2): 254-264.
20 Liman ER, Zhang YV, Montell C. Peripheral coding of taste[J]. Neuron, 2014, 81(5): 984-1000.
21 Chandrashekar J, Hoon MA, Ryba NJP, et al. The receptors and cells for mammalian taste[J]. Nature, 2006, 444(7117): 288-294.
22 Chaudhari N, Roper SD. The cell biology of taste[J]. J Cell Biol, 2010, 190(3): 285-296.
23 Hichami A, Saidi H, Khan AS, et al. In vitro functional characterization of type-Ⅰ taste bud cells as monocytes/macrophages-like which secrete proinflammatory cytokines[J]. Int J Mol Sci, 2023, 24(12): 10325.
24 Feng P, Huang LQ, Wang H. Taste bud homeostasis in health, disease, and aging[J]. Chem Senses, 2014, 39(1): 3-16.
25 Ikuta R, Kakinohana Y, Hamada S. Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds[J]. Chem Senses, 2024, 49: bjae019.
26 Li XD. T1R receptors mediate mammalian sweet and umami taste[J]. Am J Clin Nutr, 2009, 90(3): 733S-737S.
27 Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human TAS2R bitter taste receptors[J]. Chem Senses, 2010, 35(2): 157-170.
28 Zhang J, Jin H, Zhang WY, et al. Sour sensing from the tongue to the brain[J]. Cell, 2019, 179(2): 392-402.e15.
29 Liman ER, Kinnamon SC. Sour taste: receptors, cells and circuits[J]. Curr Opin Physiol, 2021, 20: 8-15.
30 Turner HN, Liman ER. The cellular and molecular basis of sour taste[J]. Annu Rev Physiol, 2022, 84: 41-58.
31 Nomura K, Nakanishi M, Ishidate F, et al. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds[J]. Neuron, 2020, 106(5): 816-829.e6.
32 Chandrashekar J, Kuhn C, Oka Y, et al. The cells and peripheral representation of sodium taste in mice[J]. Nature, 2010, 464(7286): 297-301.
33 Gaillard D, Xu MG, Liu F, et al. β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates[J]. PLoS Genet, 2015, 11(5): e1005208.
34 Kapsimali M, Barlow LA. Developing a sense of taste[J]. Semin Cell Dev Biol, 2013, 24(3): 200-209.
35 Liu F, Thirumangalathu S, Gallant NM, et al. Wnt-beta-catenin signaling initiates taste papilla development[J]. Nat Genet, 2007, 39(1): 106-112.
36 Iwatsuki K, Liu HX, Grónder A, et al. Wnt signa-ling interacts with Shh to regulate taste papilla deve-lopment[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2253-2258.
37 Zhu X, Liu Y, Zhao P, et al. Gpr177-mediated Wnt signaling is required for fungiform placode initiation[J]. J Dent Res, 2014, 93(6): 582-588.
38 Xu MG, Horrell J, Snitow M, et al. WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated diffe-rentiation[J]. Nat Commun, 2017, 8: 15397.
39 Petersen CI, Jheon AH, Mostowfi P, et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size[J]. PLoS Genet, 2011, 7(6): e1002098.
40 Prochazkova M, Häkkinen TJ, Prochazka J, et al. FGF signaling refines Wnt gradients to regulate the patterning of taste papillae[J]. Development, 2017, 144(12): 2212-2221.
41 Okubo T, Pevny LH, Hogan BLM. Sox2 is required for development of taste bud sensory cells[J]. Genes Dev, 2006, 20(19): 2654-2659.
42 Liu HX, Grosse AS, Iwatsuki K, et al. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development[J]. Dev Biol, 2012, 361(1): 39-56.
43 Ishan M, Wang ZH, Zhao P, et al. Taste papilla cell differentiation requires the regulation of secretory protein production by ALK3-BMP signaling in the tongue mesenchyme[J]. Development, 2023, 150(18): dev201838.
44 Hermans F, Hemeryck L, Lambrichts I, et al. Intertwined signaling pathways governing tooth development: a give-and-take between canonical Wnt and shh[J]. Front Cell Dev Biol, 2021, 9: 758203.
45 Ishan M, Chen GQ, Sun CM, et al. Increased activity of mesenchymal ALK2-BMP signaling causes po-steriorly truncated microglossia and disorganization of lingual tissues[J]. Genesis, 2020, 58(1): e23337.
46 Potten CS, Booth D, Cragg NJ, et al. Cell kinetic studies in murine ventral tongue epithelium: cell cycle progression studies using double labelling techniques[J]. Cell Prolif, 2002, 35(): 16-21.
47 Gaillard D, Bowles SG, Salcedo E, et al. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice[J]. PLoS Genet, 2017, 13(8): e1006990.
48 Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities[J]. PLoS One, 2013, 8(1): e53399.
49 Wood RM, Vasquez EL, Goyins KA, et al. Cyclophosphamide induces the loss of taste bud innervation in mice[J]. Chem Senses, 2024, 49: bjae010.
50 Laheij AMGA, van de Donk NWCJ. Characterization of dysgeusia and xerostomia in patients with multiple myeloma treated with the T-cell redirecting GPRC5D bispecific antibody talquetamab[J]. Support Care Cancer, 2023, 32(1): 20.
51 李梓瑕, 彭星辰, 徐欣. 头颈放疗引起味觉障碍的临床表现及机制研究进展[J]. 中华放射肿瘤学杂志, 2023, 32(6): 557-561.
Li ZX, Peng XC, Xu X. Research progress on clinical manifestations and mechanism of radiation-induced taste dysfunction in head and neck cancers[J]. Chin J Radiat Oncol, 2023, 32(6): 557-561.
52 Spector AC, Blonde G, Garcea M, et al. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination[J]. Brain Research, 2010, 1310: 46-57.
53 Gao YK, Dutta Banik D, Muna MM, et al. The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells[J]. Life Sci Alliance, 2019, 2(3): e201800287.
54 Lu CY, Lin XL, Yamashita J, et al. RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis[J]. Stem Cell Reports, 2022, 17(2): 369-383.
55 Xiong QC, Liu CJ, Zheng X, et al. METTL3-media-ted m6A RNA methylation regulates dorsal lingual epithelium homeostasis[J]. Int J Oral Sci, 2022, 14(1): 26.
56 Wang X, Feng J, Xue Y, et al. Correction: corrigendum: structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2017, 542(7640): 260.
57 Gaillard D, Shechtman LA, Millar SE, et al. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice[J]. Sci Rep, 2019, 9(1): 17934.
58 Jewkes BC, Barlow LA, Delay ER. Effect of radiation on sucrose detection thresholds of mice[J]. Chemical Senses, 2018, 43(1): 53-58.
59 Zhu J, Zhang H, Li J, et al. LiCl promotes recovery of radiation-induced oral mucositis and dysgeusia[J]. J Dent Res, 2021, 100(7): 754-763.
[1] 勾俊卓,朱亚芬,姜定卓,吴志芳. 替牙期正畸治疗对牙根发育影响的研究进展[J]. 国际口腔医学杂志, 2024, 51(6): 662-668.
[2] 韩婧文,王蕾,任诗琦,王红宇,黄颖怡,李佳敏,郑艳. 青少年颞下颌关节形态特征与下颌骨三维方向生长的相关性研究[J]. 国际口腔医学杂志, 2024, 51(4): 456-466.
[3] 张伟杰, 刘向晖, 杨玉娥. 同源盒基因调控先天缺牙的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 374-380.
[4] 王京楠,邓淑丽. 牙根发育异常疾病概述[J]. 国际口腔医学杂志, 2023, 50(6): 639-645.
[5] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[6] 王罗丹,范红. 蝶鞍的形态学特点及其与错畸形的关系[J]. 国际口腔医学杂志, 2023, 50(6): 653-660.
[7] 胡佳,王秀清,卢国英,黄晓晶. 再生性牙髓治疗在成人根尖发育不全恒牙应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 686-695.
[8] 王淳艺,李精韬. 罕见下颌骨及下唇复制畸形1例及相关文献回顾[J]. 国际口腔医学杂志, 2023, 50(4): 452-456.
[9] 石佳鑫,王淳艺,李精韬. Pierre Robin序列征患者腭裂临床治疗的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 237-242.
[10] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[11] 张宇宁,曾妮,张焙,石冰,郑谦. 咽后壁瓣咽成形术对腭裂术后患者颌面部生长影响的初步研究[J]. 国际口腔医学杂志, 2023, 50(1): 66-71.
[12] 朱星蓉,廖岚. 外胚叶发育不良综合征口腔临床诊疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 737-742.
[13] 张珊,葛晓磊,李杰,谢新宇,常维维,马文盛. 上颌前方牵引矫治对颌骨生长发育长期影响的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 548-555.
[14] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[15] 郭思敏,陈婷. 常染色体显性钙化不全型釉质发育不全相关基因序列相似性83蛋白质家族成员H及其突变的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 600-606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!