国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (3): 411-418.doi: 10.7518/gjkq.2025054
• 综述 • 上一篇
Shuhao Zheng(),Zixia Li,Xin Xu(
)
摘要:
Wnt/β-catenin信号通路是哺乳动物调控胚胎发育和组织稳态的重要途径。味蕾作为味觉系统的感受器,产生味觉信号,帮助机体评估食物的毒性和营养成分,对哺乳动物新陈代谢起到重要作用。Wnt/β-catenin信号通路在味蕾的发育和损伤修复过程中发挥了重要的调控作用,并可串话其他信号通路和调控因子,共同参与味蕾和味蕾细胞的稳态维持。本文就Wnt/β-catenin信号通路在味蕾发育和损伤修复中作用的研究进展进行综述,包括Wnt/β-catenin信号通路调控味蕾祖细胞和前体细胞的分化方向、与其他信号通路的协同作用以及维持味蕾的稳态,以期深入了解味蕾发育过程中的关键分子调控机制,为味蕾损伤修复和味觉障碍的防治提供新的思路与策略。
中图分类号:
1 | Egan JM. Physiological integration of taste and metabolism[J]. N Engl J Med, 2024, 390(18): 1699-1710. |
2 | Song CY, Wang ZJ, Li HQ, et al. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides[J]. Crit Rev Food Sci Nutr, 2025, 65(4): 695-714. |
3 | Whiddon ZD, Marshall JB, Alston DC, et al. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover[J]. PLoS Biol, 2023, 21(8): e3002271. |
4 | 郑欣, 徐欣, 何金枝, 等. 哺乳动物味蕾发育与重建的研究现状[J]. 华西口腔医学杂志, 2018, 36(5): 552-558. |
Zheng X, Xu X, He JZ, et al. Development and homeostasis of taste buds in mammals[J]. West China J Stomatol, 2018, 36(5): 552-558. | |
5 | Gaillard D, Barlow LA. A mechanistic overview of taste bud maintenance and impairment in cancer therapies[J]. Chem Senses, 2021, 46: bjab011. |
6 | Morelli I, Desideri I, Romei A, et al. Impact of radia-tion dose on patient-reported acute taste alteration in a prospective observational study cohort in head and neck squamous cell cancer (HNSCC)[J]. Radiol Med, 2023, 128(12): 1571-1579. |
7 | Barlow LA. The sense of taste: development, regene-ration, and dysfunction[J]. WIREs Mech Dis, 2022, 14(3): e1547. |
8 | Nusse R, Clevers H. Wnt/β-catenin signaling, di-sease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999. |
9 | Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307. |
10 | Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3. |
11 | Nygaard R, Yu J, Kim J, et al. Structural basis of WLS/Evi-mediated Wnt transport and secretion[J]. Cell, 2021, 184(1): 194-206.e14. |
12 | Liu F, Millar SE. Wnt/beta-catenin signaling in oral tissue development and disease[J]. J Dent Res, 2010, 89(4): 318-330. |
13 | Barlow LA. Progress and renewal in gustation: new insights into taste bud development[J]. Development, 2015, 142(21): 3620-3629. |
14 | Tam PPL, Loebel DAF. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nat Rev Ge-net, 2007, 8(5): 368-381. |
15 | Sokol SY. Maintaining embryonic stem cell pluripotency with Wnt signaling[J]. Development, 2011, 138(20): 4341-4350. |
16 | Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol, 2004, 20: 781-810. |
17 | Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regenera-tion: Wnt signaling and stem cell control[J]. Scien-ce, 2014, 346(6205): 1248012. |
18 | Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469-480. |
19 | Holland JD, Klaus A, Garratt AN, et al. Wnt signa-ling in stem and cancer stem cells[J]. Curr Opin Cell Biol, 2013, 25(2): 254-264. |
20 | Liman ER, Zhang YV, Montell C. Peripheral coding of taste[J]. Neuron, 2014, 81(5): 984-1000. |
21 | Chandrashekar J, Hoon MA, Ryba NJP, et al. The receptors and cells for mammalian taste[J]. Nature, 2006, 444(7117): 288-294. |
22 | Chaudhari N, Roper SD. The cell biology of taste[J]. J Cell Biol, 2010, 190(3): 285-296. |
23 | Hichami A, Saidi H, Khan AS, et al. In vitro functional characterization of type-Ⅰ taste bud cells as monocytes/macrophages-like which secrete proinflammatory cytokines[J]. Int J Mol Sci, 2023, 24(12): 10325. |
24 | Feng P, Huang LQ, Wang H. Taste bud homeostasis in health, disease, and aging[J]. Chem Senses, 2014, 39(1): 3-16. |
25 | Ikuta R, Kakinohana Y, Hamada S. Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds[J]. Chem Senses, 2024, 49: bjae019. |
26 | Li XD. T1R receptors mediate mammalian sweet and umami taste[J]. Am J Clin Nutr, 2009, 90(3): 733S-737S. |
27 | Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human TAS2R bitter taste receptors[J]. Chem Senses, 2010, 35(2): 157-170. |
28 | Zhang J, Jin H, Zhang WY, et al. Sour sensing from the tongue to the brain[J]. Cell, 2019, 179(2): 392-402.e15. |
29 | Liman ER, Kinnamon SC. Sour taste: receptors, cells and circuits[J]. Curr Opin Physiol, 2021, 20: 8-15. |
30 | Turner HN, Liman ER. The cellular and molecular basis of sour taste[J]. Annu Rev Physiol, 2022, 84: 41-58. |
31 | Nomura K, Nakanishi M, Ishidate F, et al. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds[J]. Neuron, 2020, 106(5): 816-829.e6. |
32 | Chandrashekar J, Kuhn C, Oka Y, et al. The cells and peripheral representation of sodium taste in mice[J]. Nature, 2010, 464(7286): 297-301. |
33 | Gaillard D, Xu MG, Liu F, et al. β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates[J]. PLoS Genet, 2015, 11(5): e1005208. |
34 | Kapsimali M, Barlow LA. Developing a sense of taste[J]. Semin Cell Dev Biol, 2013, 24(3): 200-209. |
35 | Liu F, Thirumangalathu S, Gallant NM, et al. Wnt-beta-catenin signaling initiates taste papilla development[J]. Nat Genet, 2007, 39(1): 106-112. |
36 | Iwatsuki K, Liu HX, Grónder A, et al. Wnt signa-ling interacts with Shh to regulate taste papilla deve-lopment[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2253-2258. |
37 | Zhu X, Liu Y, Zhao P, et al. Gpr177-mediated Wnt signaling is required for fungiform placode initiation[J]. J Dent Res, 2014, 93(6): 582-588. |
38 | Xu MG, Horrell J, Snitow M, et al. WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated diffe-rentiation[J]. Nat Commun, 2017, 8: 15397. |
39 | Petersen CI, Jheon AH, Mostowfi P, et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size[J]. PLoS Genet, 2011, 7(6): e1002098. |
40 | Prochazkova M, Häkkinen TJ, Prochazka J, et al. FGF signaling refines Wnt gradients to regulate the patterning of taste papillae[J]. Development, 2017, 144(12): 2212-2221. |
41 | Okubo T, Pevny LH, Hogan BLM. Sox2 is required for development of taste bud sensory cells[J]. Genes Dev, 2006, 20(19): 2654-2659. |
42 | Liu HX, Grosse AS, Iwatsuki K, et al. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development[J]. Dev Biol, 2012, 361(1): 39-56. |
43 | Ishan M, Wang ZH, Zhao P, et al. Taste papilla cell differentiation requires the regulation of secretory protein production by ALK3-BMP signaling in the tongue mesenchyme[J]. Development, 2023, 150(18): dev201838. |
44 | Hermans F, Hemeryck L, Lambrichts I, et al. Intertwined signaling pathways governing tooth development: a give-and-take between canonical Wnt and shh[J]. Front Cell Dev Biol, 2021, 9: 758203. |
45 | Ishan M, Chen GQ, Sun CM, et al. Increased activity of mesenchymal ALK2-BMP signaling causes po-steriorly truncated microglossia and disorganization of lingual tissues[J]. Genesis, 2020, 58(1): e23337. |
46 | Potten CS, Booth D, Cragg NJ, et al. Cell kinetic studies in murine ventral tongue epithelium: cell cycle progression studies using double labelling techniques[J]. Cell Prolif, 2002, 35(): 16-21. |
47 | Gaillard D, Bowles SG, Salcedo E, et al. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice[J]. PLoS Genet, 2017, 13(8): e1006990. |
48 | Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities[J]. PLoS One, 2013, 8(1): e53399. |
49 | Wood RM, Vasquez EL, Goyins KA, et al. Cyclophosphamide induces the loss of taste bud innervation in mice[J]. Chem Senses, 2024, 49: bjae010. |
50 | Laheij AMGA, van de Donk NWCJ. Characterization of dysgeusia and xerostomia in patients with multiple myeloma treated with the T-cell redirecting GPRC5D bispecific antibody talquetamab[J]. Support Care Cancer, 2023, 32(1): 20. |
51 | 李梓瑕, 彭星辰, 徐欣. 头颈放疗引起味觉障碍的临床表现及机制研究进展[J]. 中华放射肿瘤学杂志, 2023, 32(6): 557-561. |
Li ZX, Peng XC, Xu X. Research progress on clinical manifestations and mechanism of radiation-induced taste dysfunction in head and neck cancers[J]. Chin J Radiat Oncol, 2023, 32(6): 557-561. | |
52 | Spector AC, Blonde G, Garcea M, et al. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination[J]. Brain Research, 2010, 1310: 46-57. |
53 | Gao YK, Dutta Banik D, Muna MM, et al. The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells[J]. Life Sci Alliance, 2019, 2(3): e201800287. |
54 | Lu CY, Lin XL, Yamashita J, et al. RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis[J]. Stem Cell Reports, 2022, 17(2): 369-383. |
55 | Xiong QC, Liu CJ, Zheng X, et al. METTL3-media-ted m6A RNA methylation regulates dorsal lingual epithelium homeostasis[J]. Int J Oral Sci, 2022, 14(1): 26. |
56 | Wang X, Feng J, Xue Y, et al. Correction: corrigendum: structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2017, 542(7640): 260. |
57 | Gaillard D, Shechtman LA, Millar SE, et al. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice[J]. Sci Rep, 2019, 9(1): 17934. |
58 | Jewkes BC, Barlow LA, Delay ER. Effect of radiation on sucrose detection thresholds of mice[J]. Chemical Senses, 2018, 43(1): 53-58. |
59 | Zhu J, Zhang H, Li J, et al. LiCl promotes recovery of radiation-induced oral mucositis and dysgeusia[J]. J Dent Res, 2021, 100(7): 754-763. |
[1] | 勾俊卓,朱亚芬,姜定卓,吴志芳. 替牙期正畸治疗对牙根发育影响的研究进展[J]. 国际口腔医学杂志, 2024, 51(6): 662-668. |
[2] | 韩婧文,王蕾,任诗琦,王红宇,黄颖怡,李佳敏,郑艳. 青少年颞下颌关节形态特征与下颌骨三维方向生长的相关性研究[J]. 国际口腔医学杂志, 2024, 51(4): 456-466. |
[3] | 张伟杰, 刘向晖, 杨玉娥. 同源盒基因调控先天缺牙的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 374-380. |
[4] | 王京楠,邓淑丽. 牙根发育异常疾病概述[J]. 国际口腔医学杂志, 2023, 50(6): 639-645. |
[5] | 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错![]() |
[6] | 王罗丹,范红. 蝶鞍的形态学特点及其与错![]() |
[7] | 胡佳,王秀清,卢国英,黄晓晶. 再生性牙髓治疗在成人根尖发育不全恒牙应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 686-695. |
[8] | 王淳艺,李精韬. 罕见下颌骨及下唇复制畸形1例及相关文献回顾[J]. 国际口腔医学杂志, 2023, 50(4): 452-456. |
[9] | 石佳鑫,王淳艺,李精韬. Pierre Robin序列征患者腭裂临床治疗的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 237-242. |
[10] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[11] | 张宇宁,曾妮,张焙,石冰,郑谦. 咽后壁瓣咽成形术对腭裂术后患者颌面部生长影响的初步研究[J]. 国际口腔医学杂志, 2023, 50(1): 66-71. |
[12] | 朱星蓉,廖岚. 外胚叶发育不良综合征口腔临床诊疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 737-742. |
[13] | 张珊,葛晓磊,李杰,谢新宇,常维维,马文盛. 上颌前方牵引矫治对颌骨生长发育长期影响的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 548-555. |
[14] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[15] | 郭思敏,陈婷. 常染色体显性钙化不全型釉质发育不全相关基因序列相似性83蛋白质家族成员H及其突变的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 600-606. |
|