国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 34-41.doi: 10.7518/gjkq.2025007

• 口腔肿痛学专栏 • 上一篇    下一篇

磷脂酰肌醇3-激酶/蛋白激酶B通路抑制剂在口腔鳞状细胞癌中的研究进展

李京哲(),张素欣()   

  1. 河北医科大学第四医院口腔颌面外科 石家庄 050000
  • 收稿日期:2024-02-17 修回日期:2024-08-02 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 张素欣
  • 作者简介:李京哲,医师,硕士,Email:1048336251@qq.com
  • 基金资助:
    河北省财政厅老年病防治项目(13000022P00860410186-E);河北省卫生健康委员会重点科技研究计划(20190695)

Progress in research on phosphoinositide 3-kinase/protein kinase B pathway inhibitors in oral squamous cell carcinoma

Jingzhe Li(),Suxin Zhang()   

  1. Dept. of Oral and Maxillofacial Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
  • Received:2024-02-17 Revised:2024-08-02 Online:2025-01-01 Published:2025-01-11
  • Contact: Suxin Zhang
  • Supported by:
    Hebei Provincial Department of Finance Elderly Disease Prevention and Control Project(13000022-P00860410186E);Key Science and Technology Research Program of Hebei Provincial Health Commission(20190695)

摘要:

口腔鳞状细胞癌(OSCC)是发病于口腔颌面部的肿瘤,发病率较高,严重威胁人类健康。在多种癌症中发现磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/AKT)通路可以影响疾病的进展,研究发现该通路在OSCC中经常被激活,因此,该通路是OSCC治疗干预的候选通路,针对该通路的抑制剂正在开发中。本文重点介绍该通路近年来的研究进展,并讨论靶向该通路的药物研究近况。

关键词: 磷脂酰肌醇3-激酶, 蛋白激酶B, 抑制剂, 口腔鳞状细胞癌

Abstract:

Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial tumor with a high incidence rate and is a serious threat to human health. The phosphoinositide 3-kinase/protein kinase B pathway affects disease progression in va-rious cancer types. Given that this pathway is frequently activated in OSCC, it is a candidate pathway for therapeutic interventions for OSCC. Thus, inhibitors targeting this pathway are currently being developed. This article focuses on current progress in research on this pathway and discusses the recent status of research on drugs targeting it.

Key words: phosphoinositide 3-kinase, protein kinase B, inhibitors, oral squamous cell carcinoma

中图分类号: 

  • Q257

图 1

PI3K/AKT信号通路IRS-1:胰岛素受体底物-1(insulin receptor substrate-1);HIF-1:低氧诱导因子-1(hypoxia-inducible factor-1)。"

1 Lin Y, Qi Y, Jiang MJ, et al. Lactic acid-induced M2-like macrophages facilitate tumor cell migration and invasion via the GPNMB/CD44 axis in oral squamous cell carcinoma[J]. Int Immunopharmacol, 2023, 124(Pt B): 110972.
2 Flügge T, Gaudin R, Sabatakakis A, et al. Detection of oral squamous cell carcinoma in clinical photographs using a vision transformer[J]. Sci Rep, 2023, 13(1): 2296.
3 Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions[J]. J Clin Oncol, 2015, 33(29): 3269-3276.
4 Mohd Afandi MF, Liew YT. Floor of mouth squamous cell carcinoma presenting as an abscess[J].Indian J Otolaryngol Head Neck Surg, 2023, 75(2): 902-904.
5 Sarode GS, Sarode SC, Maniyar N, et al. Oral cancer databases: a comprehensive review[J]. J Oral Pathol Med, 2018, 47(6): 547-556.
6 Almangush A, Mäkitie AA, Triantafyllou A, et al. Staging and grading of oral squamous cell carcinoma: an update[J]. Oral Oncol, 2020, 107: 104799.
7 Zhang WB, Wang Y, Mao C, et al. Oral squamous cell carcinoma with metastasis to the parotid lymph node[J]. Chin J Dent Res, 2019, 22(3): 175-179.
8 Pekarek L, Garrido-Gil MJ, Sánchez-Cendra A, et al. Emerging histological and serological biomar-kers in oral squamous cell carcinoma: applications in diagnosis, prognosis evaluation and personalized therapeutics (Review) [J]. Oncol Rep, 2023, 50(6): 213.
9 Mishra MK, Gupta S, Shivangi, et al. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer[J]. Clin Transl Oncol, 2023, 25(12): 3332-3344.
10 Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer[J]. J Clin Oncol, 2010, 28(6): 1075-1083.
11 Lakshminarayana S, Augustine D, Rao RS, et al. Molecular pathways of oral cancer that predict prognosis and survival: a systematic review[J]. J Carcinog, 2018, 17: 7.
12 Roy NK, Monisha J, Padmavathi G, et al. Isoform-specific role of Akt in oral squamous cell carcinoma[J]. Biomolecules, 2019, 9(7): 253.
13 Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J]. Development, 2016, 143(17): 3050-3060.
14 Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking[J]. Nat Rev Mol Cell Biol, 2019, 20(9): 515-534.
15 Hirsch E, Gulluni F, Martini M. Phosphoinositides in cell proliferation and metabolism[J]. Adv Biol Regul, 2020, 75: 100693.
16 Li H, Prever L, Hirsch E, et al. Targeting PI3K/AKT/mTOR signaling pathway in breast cancer[J]. Cancers (Basel), 2021, 13(14): 3517.
17 Xu ZR, Han X, Ou DM, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587.
18 Zhang YQ, Kwok-Shing Ng P, Kucherlapati M, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations[J]. Cancer Cell, 2017, 31(6): 820-832.e3.
19 Xu J, Li Y, Kang M, et al. Multiple forms of cell death: a focus on the PI3K/AKT pathway[J]. J Cell Physiol, 2023, 238(9): 2026-2038.
20 Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, et al. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: possibilities for therapeutic interventions either as single agents or in combination with conventio-nal therapies[J]. IUBMB Life, 2021, 73(4): 618-642.
21 Teng Y, Fan YB, Ma JW, et al. The PI3K/Akt pathway: emerging roles in skin homeostasis and a group of non-malignant skin disorders[J]. Cells, 2021, 10(5): 1219.
22 Zhang Q, Luo SM, Luo Y, et al. Upregulation of KHDC1L promotes the proliferation and inhibits apoptosis in head and neck squamous cell carcinoma[J]. Epigenetics, 2023, 18(1): 2175168.
23 Hu JL, Li G, Liu ZF, et al. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway[J]. Mol Carcinog, 2023, 62(5): 628-640.
24 Sun Y, Yang XT, Guan SL, et al. The role of phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) in regulating the progression of oral squamous cell carcinoma[J]. Arch Oral Biol, 2023, 156: 105810.
25 Yun HM, Kwon YJ, Kim E, et al. Machilin D promotes apoptosis and autophagy, and inhibits necroptosis in human oral squamous cell carcinoma cells[J]. Int J Mol Sci, 2023, 24(5): 4576.
26 Xu HY, Chen GZ, Niu QF, et al. Spindle and kinetochore-associated complex 3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2022, 134(5): 599-614.
27 Lee MJ, Jin N, Grandis JR, et al. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(6): 118679.
28 Cohen Y, Goldenberg-Cohen N, Shalmon B, et al. Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma[J]. Oral Oncol, 2011, 47(10): 946-950.
29 Starzyńska A, Sejda A, Adamska P, et al. Prognostic value of the PIK3CA, AKT, and PTEN mutations in oral squamous cell carcinoma: literature review[J]. Arch Med Sci, 2021, 17(1): 207-217.
30 Kozaki K, Imoto I, Pimkhaokham A, et al. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma[J]. Cancer Sci, 2006, 97(12): 1351-1358.
31 Wang Y, Lin L, Xu H, et al. Genetic variants in AKT1 gene were associated with risk and survival of OSCC in Chinese Han population[J]. J Oral Pathol Med, 2015, 44(1): 45-50.
32 O’Donnell JS, Massi D, Teng MWL, et al. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux[J]. Semin Cancer Biol, 2018, 48: 91-103.
33 Mafi S, Mansoori B, Taeb S, et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment[J]. Front Immunol, 2021, 12: 774-103.
34 Peng WY, Chen JQ, Liu CW, et al. Loss of PTEN promotes resistance to T cell-mediated immunothe-rapy[J]. Cancer Discov, 2016, 6(2): 202-216.
35 Aggarwal S, John S, Sapra L, et al. Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells[J]. Cancer Chemother Pharmacol, 2019, 83(3): 451-461.
36 Deng L, Qian GQ, Zhang S, et al. Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhan-cing protein stabilization accompanied with enhan-ced β-TrCP degradation[J]. Oncogene, 2019, 38(35): 6270-6282.
37 Zhang C, Duan YQ, Xia MH, et al. TFEB mediates immune evasion and resistance to mTOR inhibition of renal cell carcinoma via induction of PD-L1[J]. Clin Cancer Res, 2019, 25(22): 6827-6838.
38 Moore EC, Cash HA, Caruso AM, et al. Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers[J]. Cancer Immunol Res, 2016, 4(7): 611-620.
39 Marijt KA, Sluijter M, Blijleven L, et al. Metabolic stress in cancer cells induces immune escape th-rough a PI3K-dependent blockade of IFNγ receptor signaling[J]. J Immunother Cancer, 2019, 7(1): 152.
40 Sivaram N, McLaughlin PA, Han HV, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer[J]. J Clin Invest, 2019, 129(8): 3264-3276.
41 André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940.
42 Chen H, Si Y, Wen J, et al. P110α inhibitor alpelisib exhibits a synergistic effect with pyrotinib and reverses pyrotinib resistant in HER2+ breast cancer[J]. Neoplasia, 2023, 43: 100913.
43 Dunn LA, Riaz N, Fury MG, et al. A phase 1b study of cetuximab and BYL719 (alpelisib) concurrent with intensity modulated radiation therapy in stage Ⅲ-ⅣB head and neck squamous cell carcinoma[J]. Int J Radiat Oncol Biol Phys, 2020, 106(3): 564-570.
44 Yang CY, Liu CR, Chang IY, et al. Cotargeting CHK1 and PI3K synergistically suppresses tumor growth of oral cavity squamous cell carcinoma in patient-derived xenografts[J]. Cancers (Basel), 2020, 12(7): 1726.
45 Chuang FC, Wang CC, Chen JH, et al. PI3k inhibitors (BKM120 and BYL719) as radiosensitizers for head and neck squamous cell carcinoma during radiotherapy[J]. PLoS One, 2021, 16(1): e0245715.
46 Marquard FE, Jücker M. PI3K/AKT/mTOR signa-ling as a molecular target in head and neck cancer[J]. Biochem Pharmacol, 2020, 172: 113729.
47 Di Leo A, Johnston S, Lee KS, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2018, 19(1): 87-100.
48 De Felice F, Guerrero Urbano T. New drug development in head and neck squamous cell carcinoma: the PI3-K inhibitors[J]. Oral Oncol, 2017, 67: 119-123.
49 Fiedler M, Schulz D, Piendl G, et al. Buparlisib modulates PD-L1 expression in head and neck squamous cell carcinoma cell lines[J]. Exp Cell Res, 2020, 396(1): 112259.
50 Lenze N, Chera B, Sheth S. An evaluation of bupar-lisib for the treatment of head and neck squamous cell carcinoma[J]. Expert Opin Pharmacother, 2021, 22(2): 135-144.
51 王玉洁, 范迪, 施俊. Buparlisib通过PI3K/AKT通路调控人口腔鳞状细胞癌细胞增殖和凋亡的研究[J]. 临床口腔医学杂志, 2021, 37(1): 15-18.
Wang YJ, Fan D, Shi J. Effects of Buparlisib on human oral squamous cell carcinoma cell proliferation and apoptosis via PI3K/AKT signaling in vitro [J]. J Clin Stomatol, 2021, 37(1): 15-18.
52 Chen X, Gao W, Yin G, et al. Phospho-EGFRTyr992 is synergistically repressed by co-inhibition of histone deacetylase (HDAC) and phosphatidy-linositol 3-kinase (PI3K), which attenuates resistance to erlotinib in head and neck cancer cells[J]. Ann Transl Med, 2021, 9(18): 1455.
53 Klinghammer K, Politz O, Eder T, et al. Combination of copanlisib with cetuximab improves tumor response in cetuximab-resistant patient-derived xenografts of head and neck cancer[J]. Oncotarget, 2020, 11(41): 3688-3697.
54 Marret G, Isambert N, Rezai K, et al. Phase I trial of copanlisib, a selective PI3K inhibitor, in combination with cetuximab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Invest New Drugs, 2021, 39(6): 1641-1648.
55 Yang Z, Liao J, Schumaker L, et al. Simultaneously targeting ErbB family kinases and PI3K in HPV-positive head and neck squamous cell carcinoma[J]. Oral Oncol, 2022, 131: 105939.
56 Iwase M, Yoshiba S, Uchid M, et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors[J]. Int J Oncol, 2007, 31(5): 1141-1147.
57 Tomita R, Sasabe E, Tomomura A, et al. Macro-phage‑derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK‑3β pathway[J]. Oncol Rep, 2020, 44(5): 1905-1916.
58 Zhang X, Ding H, Lu Z, et al. Increased LGALS3BP promotes proliferation and migration of oral squamous cell carcinoma via PI3K/AKT pathway[J]. Cell Signal, 2019, 63: 109359.
59 Tang KL, Tang HY, Du Y, et al. PAR-2 promotes cell proliferation, migration, and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma[J]. Biosci Rep, 2019, 39(7): BSR20182476.
60 Wang J, Jiang CH, Li N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2020, 11(8): 682.
61 Ma BB, Lui VW, Hui CW, et al. Preclinical evaluation of the AKT inhibitor MK-2206 in nasopharyngeal carcinoma cell lines[J]. Invest New Drugs, 2013, 31(3): 567-575.
62 Zaryouh H, De Pauw I, Baysal H, et al. The role of Akt in acquired cetuximab resistant head and neck squamous cell carcinoma: an in vitro study on a no-vel combination strategy[J]. Front Oncol, 2021, 11: 697967.
63 Yin P, Chen J, Wu Y, et al. Chemoprevention of 4NQO-induced mouse tongue carcinogenesis by AKT inhibitor through the MMP-9/RhoC signaling pathway and autophagy[J]. Anal Cell Pathol (Amst), 2022, 2022: 3770715.
64 Li M, Gao F, Yu X, et al. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 88.
65 Lang L, Lam T, Chen A, et al. Circumventing AKT-associated radioresistance in oral cancer by novel na-noparticle-encapsulated capivasertib[J]. Cells, 2020, 9(3): 533.
[1] 李冰芷, 刘云坤, 王文轩, 侯泽宇, 唐金茹, 李龙江. 口腔鳞状细胞癌嗜神经侵袭的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 362-367.
[2] 王文轩,刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江. 晚期糖基化终产物在口腔鳞状细胞癌发展及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 208-216.
[3] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[4] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[5] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[6] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[7] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[8] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[9] 李洪芳,陈中,张素欣. 免疫检查点抑制剂联合放射治疗在头颈部鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 614-620.
[10] 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470.
[11] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[12] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[13] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[14] 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212.
[15] 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!