国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 749-755.doi: 10.7518/gjkq.2024092
• 综述 • 上一篇
Wanqiong Zhang(),Qian Zheng(
),Zhonglin Jia
摘要:
核糖体蛋白L5(RPL5)是核糖体大亚基的一部分,携带RPL5基因突变的Diamond-Blackfan贫血患者会伴发多种畸形,包括唇腭裂等颅面畸形以及心脏缺陷等躯体畸形。但是在RPL5突变导致核糖体生物发生缺陷的情况下,唇腭裂发生的机制仍然知之甚少。本文综述了近年对于RPL5的研究,并讨论了突变的RPL5核糖体蛋白与唇腭裂发生的可能机制。
中图分类号:
1 | da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia[J]. Blood, 2020, 136(11): 1262-1273. |
2 | Petibon C, Malik Ghulam M, Catala M, et al. Regulation of ribosomal protein genes: an ordered anarchy[J]. Wiley Interdiscip Rev RNA, 2021, 12(3): e1632. |
3 | Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia[J]. Hum Mutat, 2009, 30(3): 321-327. |
4 | Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients[J]. Am J Hum Genet, 2008, 83(6): 769-780. |
5 | Quarello P, Garelli E, Carando A, et al. Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations[J]. Haematologica, 2010, 95(2): 206-213. |
6 | Lipton JM, Atsidaftos E, Zyskind I, et al. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry[J]. Pediatr Blood Cancer, 2006, 46(5): 558-564. |
7 | Lidral AC, Murray JC. Genetic approaches to identify disease genes for birth defects with cleft lip/pa-late as a model[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70(12): 893-901. |
8 | Konno Y, Toki T, Tandai S, et al. Mutations in the ribosomal protein genes in Japanese patients with Dia-mond-Blackfan anemia[J]. Haematologica, 2010, 95(8): 1293-1299. |
9 | Boria I, Garelli E, Gazda HT, et al. The ribosomal basis of Diamond-Blackfan anemia: mutation and database update[J]. Hum Mutat, 2010, 31(12): 1269-1279. |
10 | Shu S, Ye KQ. Structural and functional analysis of ribosome assembly factor Efg1[J]. Nucleic Acids Res, 2018, 46(4): 2096-2106. |
11 | Baßler J, Hurt E. Eukaryotic ribosome assembly[J]. Annu Rev Biochem, 2019, 88: 281-306. |
12 | Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins[J]. Mol Cell, 2009, 34(1): 3-11. |
13 | Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: from development to cancer[J]. Semin Cell Dev Biol, 2023, 136: 64-74. |
14 | Zafar A, Khan MJ, Naeem A. MDM2-an indispen-sable player in tumorigenesis[J]. Mol Biol Rep, 2023, 50(8): 6871-6883. |
15 | Zhang YP, Lu H. Signaling to p53: ribosomal proteins find their way[J]. Cancer Cell, 2009, 16(5): 369-377. |
16 | Dörner K, Ruggeri C, Zemp I, et al. Ribosome biogenesis factors-from names to functions[J]. EMBO J, 2023, 42(7): e112699. |
17 | Michael WM, Dreyfuss G. Distinct domains in ribosomal protein L5 mediate 5S rRNA binding and nucleolar localization[J]. J Biol Chem, 1996, 271(19): 11571-11574. |
18 | Castillo Duque de Estrada NM, Thoms M, Flemming D, et al. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways[J]. Nat Struct Mol Biol, 2023, 30(8): 1119-1131. |
19 | Bursać S, Brdovčak MC, Pfannkuchen M, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress[J]. Proc Natl Acad Sci U S A, 2012, 109(50): 20467-20472. |
20 | Lin YY, Song T, Ronde EM, et al. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate[J]. Medicine, 2021, 100(21): e26101. |
21 | Schreiner C, Kernl B, Dietmann P, et al. The ribosomal protein L5 functions during Xenopus anterior development through apoptotic pathways[J]. Front Cell Dev Biol, 2022, 10: 777121. |
22 | Fukui Y, Hayano S, Kawanabe N, et al. Investigation of the molecular causes underlying physical abnormalities in Diamond-Blackfan anemia patients with RPL5 haploinsufficiency[J]. Pathol Int, 2021, 71(12): 803-813. |
23 | Liu YL, Shibuya A, Glader B, et al. Animal models of Diamond-Blackfan anemia: updates and challen-ges[J]. Haematologica, 2023, 108(5): 1222-1231. |
24 | Kazerounian S, Ciarlini PD, Yuan D, et al. Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice[J]. J Cancer, 2016, 7(1): 32-36. |
25 | Kazerounian S, Yuan D, Alexander MS, et al. Rpl5-inducible mouse model for studying Diamond-Blackfan anemia[J]. Discoveries, 2019, 7(3): e96. |
26 | Yu L, Lemay P, Ludlow A, et al. A new murine Rpl5 (uL18) mutation provides a unique model of varia-bly penetrant Diamond-Blackfan anemia[J]. Blood Adv, 2021, 5(20): 4167-4178. |
27 | Rahit KMTH, Tarailo-Graovac M. Genetic modi-fiers and rare Mendelian disease[J]. Genes, 2020, 11(3): 239. |
28 | Maehama T, Nishio M, Otani J, et al. Nucleolar stress: molecular mechanisms and related human diseases[J]. Cancer Sci, 2023, 114(5): 2078-2086. |
29 | Panić L, Tamarut S, Sticker-Jantscheff M, et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation[J]. Mol Cell Biol, 2006, 26(23): 8880-8891. |
30 | Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways[J]. Cell Death Differ, 2022, 29(5): 972-982. |
31 | Bowen ME, Attardi LD. The role of p53 in developmental syndromes[J]. J Mol Cell Biol, 2019, 11(3): 200-211. |
32 | Matsumori H, Watanabe K, Tachiwana H, et al. Ribosomal protein L5 facilitates rDNA-bundled condensate and nucleolar assembly[J]. Life Sci Al-liance, 2022, 5(7): e202101045. |
33 | Bizhanova A, Kaufman PD. Close to the edge: he-terochromatin at the nucleolar and nuclear periphe-ries[J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(1): 194666. |
34 | Kapralova K, Jahoda O, Koralkova P, et al. Oxidative DNA damage, inflammatory signature, and altered erythrocytes properties in Diamond-Blackfan anemia[J]. Int J Mol Sci, 2020, 21(24): 9652. |
35 | Sulima SO, Kampen KR, Vereecke S, et al. Ribosomal lesions promote oncogenic mutagenesis[J]. Cancer Res, 2019, 79(2): 320-327. |
36 | Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. |
37 | Manickavinayaham S, Velez-Cruz R, Biswas AK, et al. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors[J]. Cell Cycle, 2020, 19(18): 2260-2269. |
38 | Luan YZ, Tang N, Yang JQ, et al. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells[J]. Nucleic Acids Res, 2022, 50(12): 6601-6617. |
39 | Kang J, Brajanovski N, Chan KT, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 323. |
40 | Kampen KR, Sulima SO, Vereecke S, et al. Hallmarks of ribosomopathies[J]. Nucleic Acids Res, 2020, 48(3): 1013-1028. |
41 | Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: old concepts, new controversies[J]. Trends Genet, 2019, 35(10): 754-767. |
42 | Miller SC, MacDonald CC, Kellogg MK, et al. Specialized ribosomes in health and disease[J]. Int J Mol Sci, 2023, 24(7): 6334. |
43 | Boussaid I, Le Goff S, Floquet C, et al. Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14-deficient cells[J]. Haematologica, 2021, 106(3): 746-758. |
44 | Genuth NR, Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life[J]. Mol Cell, 2018, 71(3): 364-374. |
[1] | 夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 632-638. |
[2] | 万雪丽,石永乐,张秀芬,王欢,田莉. 唇腭裂患儿全身麻醉苏醒期躁动多维干预体系的构建研究[J]. 国际口腔医学杂志, 2023, 50(3): 272-278. |
[3] | 陈卓,石冰,李精韬. 唇腭裂患者外鼻生长特征的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 279-286. |
[4] | 裴玲,曾妮,杨超,何苗,罗强,石冰,郑谦. 辅助局部麻醉对唇腭裂整复术后镇痛效果的研究[J]. 国际口腔医学杂志, 2022, 49(6): 657-662. |
[5] | 黄艺璇,石冰,李精韬. 唇腭裂患者鼻通气功能的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 453-461. |
[6] | 张琦,范存晖,杨茜,李然,徐晓琳,丁玮,王文惠,杨彩秀. 替牙期骨性Ⅲ类单侧完全性唇腭裂与非唇腭裂患者牙弓形态的对比研究[J]. 国际口腔医学杂志, 2022, 49(2): 144-152. |
[7] | 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724. |
[8] | 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519. |
[9] | 吴敏,石冰. 唇腭裂婴儿母乳喂养的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 269-273. |
[10] | 侯亚丽,马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4): 397-405. |
[11] | 宋少华,莫水学. 唇腭裂患者序列治疗中的正畸治疗[J]. 国际口腔医学杂志, 2019, 46(6): 740-744. |
[12] | 邓程丹,石冰,李杨. 唇腭裂患者的脑部结构与功能研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 617-620. |
[13] | 刘丹,毛渤淳,雒如燕,崔珂,石冰,龚彩霞. 唇腭裂患者家庭抗逆力及其影响因素[J]. 国际口腔医学杂志, 2019, 46(3): 297-301. |
[14] | 刘育豪,白娜,程梦龙,石冰,李芷慧,龚彩霞. 视频示范法对围手术期唇腭裂患儿父母的心理干预效果分析[J]. 国际口腔医学杂志, 2019, 46(1): 26-29. |
[15] | 李群,关为群,张杨安,黄志超. 骨膜蛋白和p53在口腔白斑及鳞状细胞癌组织中的表达及意义[J]. 国际口腔医学杂志, 2019, 46(1): 5-11. |
|