国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 749-755.doi: 10.7518/gjkq.2024092

• 综述 • 上一篇    

核糖体蛋白L5在Diamond-Blackfan贫血伴发唇腭裂中作用机制的研究进展

张婉琼(),郑谦(),贾仲林   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院唇腭裂外科 成都 610041
  • 收稿日期:2023-12-04 修回日期:2024-06-25 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 郑谦
  • 作者简介:张婉琼,硕士,Email:2733318673@qq.com
  • 基金资助:
    四川大学华西口腔医院交叉项目(RD-03-202301)

Research progress on the mechanism of ribosomal protein L5 in Diamond-Blackfan anemia associated with cleft lip and palate

Wanqiong Zhang(),Qian Zheng(),Zhonglin Jia   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-04 Revised:2024-06-25 Online:2024-11-01 Published:2024-11-04
  • Contact: Qian Zheng
  • Supported by:
    West China Hospital of Stomatology Sichuan University Crossover Project(RD-03-202301)

摘要:

核糖体蛋白L5(RPL5)是核糖体大亚基的一部分,携带RPL5基因突变的Diamond-Blackfan贫血患者会伴发多种畸形,包括唇腭裂等颅面畸形以及心脏缺陷等躯体畸形。但是在RPL5突变导致核糖体生物发生缺陷的情况下,唇腭裂发生的机制仍然知之甚少。本文综述了近年对于RPL5的研究,并讨论了突变的RPL5核糖体蛋白与唇腭裂发生的可能机制。

关键词: 核糖体蛋白L5, Diamond-Blackfan贫血, 唇腭裂, P53, 核糖体蛋白

Abstract:

Ribosomal protein L5 (RPL5) is a part of the large subunit of the ribosome. Diamond-Blackfan anemia in patients who carry mutations in the RPL5 gene is associated with various malformations, including craniofacial malformations such as cleft lip and palate and somatic malformations such as heart defects. In the case of RPL5 mutation leading to defects in ribosome organisms, the mechanism by which cleft lip and palate occurs is still poorly understood. This study reviews recent research on RPL5 and discusses the possible mechanisms by which mutated RPL5 occurs in cleft lip and palate.

Key words: ribosomal protein L5, Diamond-Blackfan anemia, cleft lip and palate, P53, ribosomal protein

中图分类号: 

  • Q75
1 da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia[J]. Blood, 2020, 136(11): 1262-1273.
2 Petibon C, Malik Ghulam M, Catala M, et al. Regulation of ribosomal protein genes: an ordered anarchy[J]. Wiley Interdiscip Rev RNA, 2021, 12(3): e1632.
3 Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia[J]. Hum Mutat, 2009, 30(3): 321-327.
4 Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients[J]. Am J Hum Genet, 2008, 83(6): 769-780.
5 Quarello P, Garelli E, Carando A, et al. Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations[J]. Haematologica, 2010, 95(2): 206-213.
6 Lipton JM, Atsidaftos E, Zyskind I, et al. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry[J]. Pediatr Blood Cancer, 2006, 46(5): 558-564.
7 Lidral AC, Murray JC. Genetic approaches to identify disease genes for birth defects with cleft lip/pa-late as a model[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70(12): 893-901.
8 Konno Y, Toki T, Tandai S, et al. Mutations in the ribosomal protein genes in Japanese patients with Dia-mond-Blackfan anemia[J]. Haematologica, 2010, 95(8): 1293-1299.
9 Boria I, Garelli E, Gazda HT, et al. The ribosomal basis of Diamond-Blackfan anemia: mutation and database update[J]. Hum Mutat, 2010, 31(12): 1269-1279.
10 Shu S, Ye KQ. Structural and functional analysis of ribosome assembly factor Efg1[J]. Nucleic Acids Res, 2018, 46(4): 2096-2106.
11 Baßler J, Hurt E. Eukaryotic ribosome assembly[J]. Annu Rev Biochem, 2019, 88: 281-306.
12 Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins[J]. Mol Cell, 2009, 34(1): 3-11.
13 Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: from development to cancer[J]. Semin Cell Dev Biol, 2023, 136: 64-74.
14 Zafar A, Khan MJ, Naeem A. MDM2-an indispen-sable player in tumorigenesis[J]. Mol Biol Rep, 2023, 50(8): 6871-6883.
15 Zhang YP, Lu H. Signaling to p53: ribosomal proteins find their way[J]. Cancer Cell, 2009, 16(5): 369-377.
16 Dörner K, Ruggeri C, Zemp I, et al. Ribosome biogenesis factors-from names to functions[J]. EMBO J, 2023, 42(7): e112699.
17 Michael WM, Dreyfuss G. Distinct domains in ribosomal protein L5 mediate 5S rRNA binding and nucleolar localization[J]. J Biol Chem, 1996, 271(19): 11571-11574.
18 Castillo Duque de Estrada NM, Thoms M, Flemming D, et al. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways[J]. Nat Struct Mol Biol, 2023, 30(8): 1119-1131.
19 Bursać S, Brdovčak MC, Pfannkuchen M, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress[J]. Proc Natl Acad Sci U S A, 2012, 109(50): 20467-20472.
20 Lin YY, Song T, Ronde EM, et al. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate[J]. Medicine, 2021, 100(21): e26101.
21 Schreiner C, Kernl B, Dietmann P, et al. The ribosomal protein L5 functions during Xenopus anterior development through apoptotic pathways[J]. Front Cell Dev Biol, 2022, 10: 777121.
22 Fukui Y, Hayano S, Kawanabe N, et al. Investigation of the molecular causes underlying physical abnormalities in Diamond-Blackfan anemia patients with RPL5 haploinsufficiency[J]. Pathol Int, 2021, 71(12): 803-813.
23 Liu YL, Shibuya A, Glader B, et al. Animal models of Diamond-Blackfan anemia: updates and challen-ges[J]. Haematologica, 2023, 108(5): 1222-1231.
24 Kazerounian S, Ciarlini PD, Yuan D, et al. Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice[J]. J Cancer, 2016, 7(1): 32-36.
25 Kazerounian S, Yuan D, Alexander MS, et al. Rpl5-inducible mouse model for studying Diamond-Blackfan anemia[J]. Discoveries, 2019, 7(3): e96.
26 Yu L, Lemay P, Ludlow A, et al. A new murine Rpl5 (uL18) mutation provides a unique model of varia-bly penetrant Diamond-Blackfan anemia[J]. Blood Adv, 2021, 5(20): 4167-4178.
27 Rahit KMTH, Tarailo-Graovac M. Genetic modi-fiers and rare Mendelian disease[J]. Genes, 2020, 11(3): 239.
28 Maehama T, Nishio M, Otani J, et al. Nucleolar stress: molecular mechanisms and related human diseases[J]. Cancer Sci, 2023, 114(5): 2078-2086.
29 Panić L, Tamarut S, Sticker-Jantscheff M, et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation[J]. Mol Cell Biol, 2006, 26(23): 8880-8891.
30 Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways[J]. Cell Death Differ, 2022, 29(5): 972-982.
31 Bowen ME, Attardi LD. The role of p53 in developmental syndromes[J]. J Mol Cell Biol, 2019, 11(3): 200-211.
32 Matsumori H, Watanabe K, Tachiwana H, et al. Ribosomal protein L5 facilitates rDNA-bundled condensate and nucleolar assembly[J]. Life Sci Al-liance, 2022, 5(7): e202101045.
33 Bizhanova A, Kaufman PD. Close to the edge: he-terochromatin at the nucleolar and nuclear periphe-ries[J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(1): 194666.
34 Kapralova K, Jahoda O, Koralkova P, et al. Oxidative DNA damage, inflammatory signature, and altered erythrocytes properties in Diamond-Blackfan anemia[J]. Int J Mol Sci, 2020, 21(24): 9652.
35 Sulima SO, Kampen KR, Vereecke S, et al. Ribosomal lesions promote oncogenic mutagenesis[J]. Cancer Res, 2019, 79(2): 320-327.
36 Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863.
37 Manickavinayaham S, Velez-Cruz R, Biswas AK, et al. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors[J]. Cell Cycle, 2020, 19(18): 2260-2269.
38 Luan YZ, Tang N, Yang JQ, et al. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells[J]. Nucleic Acids Res, 2022, 50(12): 6601-6617.
39 Kang J, Brajanovski N, Chan KT, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 323.
40 Kampen KR, Sulima SO, Vereecke S, et al. Hallmarks of ribosomopathies[J]. Nucleic Acids Res, 2020, 48(3): 1013-1028.
41 Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: old concepts, new controversies[J]. Trends Genet, 2019, 35(10): 754-767.
42 Miller SC, MacDonald CC, Kellogg MK, et al. Specialized ribosomes in health and disease[J]. Int J Mol Sci, 2023, 24(7): 6334.
43 Boussaid I, Le Goff S, Floquet C, et al. Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14-deficient cells[J]. Haematologica, 2021, 106(3): 746-758.
44 Genuth NR, Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life[J]. Mol Cell, 2018, 71(3): 364-374.
[1] 夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 632-638.
[2] 万雪丽,石永乐,张秀芬,王欢,田莉. 唇腭裂患儿全身麻醉苏醒期躁动多维干预体系的构建研究[J]. 国际口腔医学杂志, 2023, 50(3): 272-278.
[3] 陈卓,石冰,李精韬. 唇腭裂患者外鼻生长特征的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 279-286.
[4] 裴玲,曾妮,杨超,何苗,罗强,石冰,郑谦. 辅助局部麻醉对唇腭裂整复术后镇痛效果的研究[J]. 国际口腔医学杂志, 2022, 49(6): 657-662.
[5] 黄艺璇,石冰,李精韬. 唇腭裂患者鼻通气功能的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 453-461.
[6] 张琦,范存晖,杨茜,李然,徐晓琳,丁玮,王文惠,杨彩秀. 替牙期骨性Ⅲ类单侧完全性唇腭裂与非唇腭裂患者牙弓形态的对比研究[J]. 国际口腔医学杂志, 2022, 49(2): 144-152.
[7] 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724.
[8] 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519.
[9] 吴敏,石冰. 唇腭裂婴儿母乳喂养的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 269-273.
[10] 侯亚丽,马利. 亚洲人群干扰素调节因子6基因多态性与非综合征型唇腭裂相关性研究的Meta分析[J]. 国际口腔医学杂志, 2020, 47(4): 397-405.
[11] 宋少华,莫水学. 唇腭裂患者序列治疗中的正畸治疗[J]. 国际口腔医学杂志, 2019, 46(6): 740-744.
[12] 邓程丹,石冰,李杨. 唇腭裂患者的脑部结构与功能研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 617-620.
[13] 刘丹,毛渤淳,雒如燕,崔珂,石冰,龚彩霞. 唇腭裂患者家庭抗逆力及其影响因素[J]. 国际口腔医学杂志, 2019, 46(3): 297-301.
[14] 刘育豪,白娜,程梦龙,石冰,李芷慧,龚彩霞. 视频示范法对围手术期唇腭裂患儿父母的心理干预效果分析[J]. 国际口腔医学杂志, 2019, 46(1): 26-29.
[15] 李群,关为群,张杨安,黄志超. 骨膜蛋白和p53在口腔白斑及鳞状细胞癌组织中的表达及意义[J]. 国际口腔医学杂志, 2019, 46(1): 5-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!