国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 742-748.doi: 10.7518/gjkq.2024090

• 综述 • 上一篇    

细胞自噬及其在口腔种植体骨结合中的作用与机制

章梦媛(),卢洪叶,李千慧,孙平()   

  1. 浙江大学医学院附属口腔医院 浙江大学口腔医学院浙江省口腔疾病临床医学研究中心 浙江省口腔生物医学研究重点实验室浙江大学癌症研究院 口腔生物材料与器械浙江省工程研究中心 杭州 310000
  • 收稿日期:2023-12-13 修回日期:2024-06-27 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 孙平
  • 作者简介:章梦媛,硕士,Email:3180102496@zju.edu.cn
  • 基金资助:
    国家自然科学基金青年基金(82301072);浙江省科技厅公益研究专项(LGF22H140007);浙江大学医学院附属口腔医院交叉学科研究项目(RD2022JCXK01)

Autophagy and its role and mechanism in osseointegration of oral implants

Mengyuan Zhang(),Hongye Lu,Qianhui Li,Ping Sun()   

  1. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Researh Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China Supported by: Foundation:National Natural Science Foundation of China (82301072); Public Welfare Technology Project of Science Technology Department of Zhejiang Province (LGF22H140007); Interdisciplinary Research Project of Stomatology Hospital Affiliated to Zhejiang University School of Medicine (RD2022JCXK01)
  • Received:2023-12-13 Revised:2024-06-27 Online:2024-11-01 Published:2024-11-04
  • Contact: Ping Sun

摘要:

形成良好的种植体-骨结合界面是口腔种植治疗成功的关键,细胞自噬在骨免疫微环境中发挥重要的调控功能,同时介导骨组织细胞在种植体表面的骨形成过程。本文综述了细胞自噬在种植体骨结合中作用的研究进展,以阐明细胞自噬对骨组织稳态的调节机制,以及在种植体骨结合调控中的关键作用,这些研究为进一步提升口腔种植治疗效果提供了重要的参考。

关键词: 自噬, 线粒体自噬, 骨结合, 骨稳态, 种植体

Abstract:

The interface of osseointegration is essential for the success of implants. Autophagy plays an important regulatory role in osteoimmunology and mediates bone tissue differentiation and bone remodeling on the surface of metal implants. In this paper, the association between autophagy and implant bone adhesion was reviewed to confirm the key role of autophagy in the regulation of bone hemostasis and osseointegration of implants and to provide a new therapeutic target for further improvement of the initial stability of implants.

Key words: autophagy, mitophagy, osseointegration, bone hemostasis, dental implants

中图分类号: 

  • R783.6

图 1

细胞自噬机制示意图"

图 2

自噬参与种植体表面成骨分化的机制"

1 Brånemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent, 1983, 50(3): 399-410.
2 Terheyden H, Lang NP, Bierbaum S, et al. Osseointegration: communication of cells[J]. Clin Oral Implants Res, 2012, 23(10): 1127-1135.
3 Viry E, Paggetti J, Baginska J, et al. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity[J]. Biochem Pharmacol, 2014, 92(1): 31-42.
4 Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737.
5 Kim KH, Lee MS. Autophagy-a key player in cellular and body metabolism[J]. Nat Rev Endocrinol, 2014, 10(6): 322-337.
6 Galluzzi L, Baehrecke EH, Ballabio A, et al. Mole-cular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811-1836.
7 Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141.
8 Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curr Opin Cell Biol, 2010, 22(2): 124-131.
9 Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5): 795-803.
10 Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology[J]. Nat Cell Biol, 2018, 20(9): 1013-1022.
11 Wang S, Deng ZT, Ma YC, et al. The role of auto-phagy and mitophagy in bone metabolic disorders[J]. Int J Biol Sci, 2020, 16(14): 2675-2691.
12 Bai Y, Liu C, Fu L, et al. Mangiferin enhances endochondral ossification-based bone repair in massive bone defect by inducing autophagy through activa-ting AMP-activated protein kinase signaling pathway[J]. FASEB J, 2018, 32(8): 4573-4584.
13 Chen M, Jing D, Ye R, et al. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy[J]. Stem Cell Res Ther, 2021, 12(1): 566.
14 Whitehouse CA, Waters S, Marchbank K, et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity[J]. Proc Natl Acad Sci U S A, 2010, 107(29): 12913-12918.
15 Zhang F, Peng WX, Zhang J, et al. P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head[J]. Cell Death Dis, 2020, 11(1): 42.
16 Lee SY, An HJ, Kim JM, et al. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis[J]. Stem Cell Res Ther, 2021, 12(1): 589.
17 Li RF, Chen G, Ren JG, et al. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis[J]. J Histochem Cytochem, 2014, 62(12): 879-888.
18 Ke DS, Fu XM, Xue Y, et al. IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro [J]. Biochem Biophys Res Commun, 2018, 497(3): 890-896.
19 Zhong JH, Wang ZX, Yuan WL, et al. Interleukin-17 promotes osteoclastogenesis and periodontal da-mage via autophagy in vitro and in vivo [J]. Int Immunopharmacol, 2022, 107: 108631.
20 Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions[J]. Periodontol 2000, 2017, 73(1): 22-40.
21 Accioni F, Vázquez J, Merinero M, et al. Latest trends in surface modification for dental implantology: innovative developments and analytical applications[J]. Pharmaceutics, 2022, 14(2): 455.
22 Schimmel M, Srinivasan M, McKenna G, et al. Effect of advanced age and/or systemic medical conditions on dental implant survival: a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(): 311-330.
23 Aghaloo T, Pi-Anfruns J, Moshaverinia A, et al. The effects of systemic diseases and medications on implant osseointegration: a systematic review[J]. Int J Oral Maxillofac Implants, 2019, 34: s35-s49.
24 Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism[J]. Rev Endocr Metab Disord, 2014, 15(1): 11-20.
25 Kaluđerović MR, Mojić M, Schreckenbach JP, et al. A key role of autophagy in osteoblast differentiation on titanium-based dental implants[J]. Cells Tissues Organs, 2014, 200(3/4): 265-277.
26 Wang H, Ma Y, Li J, et al. Modulating autophagy by strontium-doped micro/nano rough titanium surface for promotion of osteogenesis and inhibition of osteoclastogenesis[J]. Colloids Surf B Biointerfaces, 2022, 210: 112246.
27 Randow F, Münz C. Autophagy in the regulation of pathogen replication and adaptive immunity[J]. Tren-ds Immunol, 2012, 33(10): 475-487.
28 Li LJ, Yang S, Xu L, et al. Nanotopography on titanium promotes osteogenesis via autophagy-media-ted signaling between YAP and β‑catenin[J]. Acta Biomater, 2019, 96: 674-685.
29 Zhang T, Jiang MY, Yin XJ, et al. Mechanism of exosomes involved in osteoimmunity promoting osseointegration around titanium implants with small-scale topography[J]. Front Bioeng Biotechnol, 2021, 9: 682384.
30 Zhang T, Jiang MY, Yin XJ, et al. The role of autophagy in the process of osseointegration around titanium implants with micro-nano topography promo-ted by osteoimmunity[J]. Sci Rep, 2021, 11(1): 18418.
31 Wang GF, Luo JX, Qiao YQ, et al. AMPK/mTOR pathway is involved in autophagy induced by magnesium-incorporated TiO2 surface to promote BMSC osteogenic differentiation[J]. J Funct Biomater, 2022, 13(4): 221.
32 Liu RJ, Gao Y, Huang L, et al. Alpha-ketoglutarate up-regulates autophagic activity in peri-implant environment and enhances dental implant osseointegration in osteoporotic mice[J]. J Clin Periodontol, 2023, 50(5): 671-683.
33 Fretwurst T, Buzanich G, Nahles S, et al. Metal elements in tissue with dental peri-implantitis: a pilot study[J]. Clin Oral Implants Res, 2016, 27(9): 1178-1186.
34 Xian GY, Chen WS, Gu MH, et al. Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway[J]. J Biomed Mater Res A, 2020, 108(9): 1792-1805.
35 Liu N, Meng J, Wang Z, et al. Autophagy mediated TiAl₆V₄ particle-induced peri-implant osteolysis by promoting expression of TNF-α[J]. Biochem Biophys Res Commun, 2016, 473(1): 133-139.
36 Wang ZH, Liu NC, Liu K, et al. Autophagy media-ted CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis[J]. Autophagy, 2015, 11(12): 2358-2369.
37 Deng ZT, Wang ZH, Jin JW, et al. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loose-ning[J]. Acta Biomater, 2017, 49: 541-554.
38 Zhang ZW, Fu XW, Xu L, et al. Nanosized alumina particle and proteasome inhibitor bortezomib prevented inflammation and osteolysis induced by titanium particle via autophagy and NF‑κB signaling[J]. Sci Rep, 2020, 10(1): 5562.
39 Chen WS, Xian GY, Gu MH, et al. Autophagy inhi-bitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis[J]. Biomater Sci, 2021, 9(14): 4922-4935.
40 Tang CZ, Deng JL, Xu RG, et al. Micro/nano-modified titanium surfaces accelerate osseointegration via Rab7-dependent mitophagy[J]. Biomater Sci, 2023, 11(2): 666-677.
41 Zhu LX, Wang ZJ, Sun XY, et al. STAT3/mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss[J]. J Bone Miner Res, 2023, 38(2): 335-353.
42 Lin JT, Xu RY, Shen X, et al. Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation[J]. Biochem Biophys Res Commun, 2020, 531(2): 228-235.
43 Xu R, Shi G, Xu L, et al. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity[J]. J Tissue Eng Regen Med, 2018, 12(5): 1209-1219.
[1] 李明,唐瞻贵,原振英. 槟榔提取物对口腔上皮细胞生物功能影响的研究[J]. 国际口腔医学杂志, 2024, 51(5): 538-549.
[2] 李佳敏,李毓晨,葛张洁,廖凌子,郭鑫,郭晓龙,周平. 抗菌肽在口腔钛种植体涂层中的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 572-584.
[3] 张政,杨锋,李家锋,曹焜. 钛种植体抗菌化修饰的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 585-595.
[4] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[5] 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673.
[6] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[7] 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551.
[8] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[9] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[10] 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560.
[11] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[12] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[13] 王悦,文冰,邓梦婷,李建平. 低能量激光治疗对种植体周围组织愈合的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 725-730.
[14] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384.
[15] 方苓力,谭玺,叶雨丝,黄兰,何瑶. 颞下颌关节退行性变早期髁突软骨细胞行为改变的实验研究[J]. 国际口腔医学杂志, 2021, 48(4): 417-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!