国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (5): 585-595.doi: 10.7518/gjkq.2024084

• 种植专栏 • 上一篇    下一篇

钛种植体抗菌化修饰的研究进展

张政1(),杨锋1,2,李家锋2(),曹焜2   

  1. 1.徐州医科大学口腔医学院 徐州 221009
    2.徐州医科大学附属医院口腔科 徐州 221002
  • 收稿日期:2023-12-16 修回日期:2024-05-01 出版日期:2024-09-01 发布日期:2024-09-14
  • 通讯作者: 李家锋
  • 作者简介:张政,硕士,Email:zhangzheng0130@163.com

Research progress on antimicrobial modification of titanium implants

Zheng Zhang1(),Feng Yang1,2,Jiafeng Li2(),Kun Cao2   

  1. 1.School of Stomatology, Xuzhou Medical University, Xuzhou 221009, China
    2.Dept. of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
  • Received:2023-12-16 Revised:2024-05-01 Online:2024-09-01 Published:2024-09-14
  • Contact: Jiafeng Li

摘要:

种植体周围炎是导致种植失败的主要原因之一,钛基材料种植体缺乏抗菌能力,所以通过对种植体表面进行元素掺杂和形貌改性来提高种植体的抗菌能力,预防种植体周围炎,是提高种植成功率的有效可行的研究方法。然而,受限于其制作高成本、流程复杂、抗菌效果不尽稳定,目前临床中鲜有应用含抗菌修饰结构的种植体。本文从种植体抗菌材料的分类切入,叙述其抗菌机制及抗菌效果,重点介绍了口腔种植体抗菌材料的研究现状及新进展,并且归纳总结抗菌材料研究存在的难点。

关键词: 钛种植体, 表面改性, 抗菌涂层

Abstract:

Peri-implantitis is a primary cause of implant failure, and titanium-based implant materials lack antimicro-bial properties. Therefore, enhancing the antimicrobial capability of implants by surface modification and element doping has been identified as an effective and feasible research method to improve the antimicrobial ability of implants and prevent peri-implantitis, thereby enhancing the success rate of dental implants. However, the clinical application of implants with antimicrobial structures is currently limited because of the high production costs, complex processes, and inconsistent antimicrobial effects associated with their fabrication. Moreover, implants with antimicrobial structures, which are used in clinical practice, are limited. Thus, this review classifies implant antibacterial materials and describes their antibacterial mechanisms and antibacterial effects. Furthermore, it summarizes the challenges encountered in antimicrobial material research.

Key words: titanium implant, surface modification, antibacterial coating

中图分类号: 

  • R783.1
1 Maleki Dizaj S, Shokrgozar H, Yazdani J, et al. Antibacterial effects of curcumin nanocrystals against Porphyromonas gingivalis isolated from patients with implant failure[J]. Clin Pract, 2022, 12(5): 809-817.
2 Song L, Jiang JM, Li J, et al. The characteristics of microbiome and cytokines in healthy implants and peri-implantitis of the same individuals[J]. J Clin Med, 2022, 11(19): 5817.
3 Matica MA, Aachmann FL, Tøndervik A, et al. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action[J]. Int J Mol Sci, 2019, 20(23): 5889.
4 Sharifianjazi F, Khaksar S, Esmaeilkhanian A, et al. Advancements in fabrication and application of chitosan composites in implants and dentistry: a review[J]. Biomolecules, 2022, 12(2): 155.
5 范华杨, 尹一佳, 王铮, 等. 钛种植体表面壳聚糖涂层的作用与优势[J]. 中国组织工程研究, 2018, 22(34): 5553-5558.
Fan HY, Yin YJ, Wang Z, et al. Chitosan coatings for titanium implants: applications and strengths[J]. Chin J Tissue Eng Res, 2018, 22(34): 5553-5558.
6 Lin RT, Wang ZR, Li ZH, et al. A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections[J]. Mater Today Bio, 2022, 15: 100330.
7 Zarghami V, Ghorbani M, Bagheri KP, et al. Impro-ving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline[J]. J Mater Sci Mater Med, 2022, 33(6): 46.
8 López-Valverde N, López-Valverde A, Ramírez JM. Systematic review of effectiveness of chitosan as a biofunctionalizer of titanium implants[J]. Biology (Basel), 2021, 10(2): 102.
9 Thambiliyagodage C, Jayanetti M, Mendis A, et al. Recent advances in chitosan-based applications-a review[J]. Materials, 2023, 16(5): 2073.
10 Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resin composite[J]. J Dent Res, 1994, 73(8): 1437-1443.
11 Melo MA, Wu JL, Weir MD, et al. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate[J]. J Dent, 2014, 42(9): 1193-1201.
12 Liu D, Peng X, Wang SP, et al. A novel antibacterial resin-based root canal sealer modified by dimethylaminododecyl methacrylate[J]. Sci Rep, 2019, 9(1): 10632.
13 Zhang KK, Ren B, Zhou XD, et al. Effect of antimicrobial denture base resin on multi-species biofilm formation[J]. Int J Mol Sci, 2016, 17(7): 1033.
14 de Moraes Porto ICC, de Lisieux Guedes Ferreira Lôbo T, Rodrigues RF, et al. Insight into the deve-lopment of versatile dentin bonding agents to increase the durability of the bonding interface[J]. Front Dent Med, 2023, 4: 1127368.
15 Zhou YJ, Wang SP, Zhou XD, et al. Short-time antibacterial effects of dimethylaminododecyl methacrylate on oral multispecies biofilm in vitro [J]. Biomed Res Int, 2019, 2019: 6393470.
16 Moussa H, Jones MM, Huo NB, et al. Biocompatibility, mechanical, and bonding properties of a dental adhesive modified with antibacterial monomer and cross-linker[J]. Clin Oral Investig, 2021, 25(5): 2877-2889.
17 Bhadila G, Wang XH, Weir MD, et al. Low-shrin-kage-stress nanocomposite: an insight into shrinkage stress, antibacterial, and ion release properties[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(8): 1124-1134.
18 Zhou W, Peng X, Ma Y, et al. Two-staged time-dependent materials for the prevention of implant-related infections[J]. Acta Biomater, 2020, 101: 128-140.
19 Chen H, Zhou YJ, Zhou XD, et al. Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3585-3595.
20 Jia Y, Lu H, Zhu L. Molecular mechanism of anti-biotic resistance induced by mono- and twin-chained quaternary ammonium compounds[J]. Sci Total Environ, 2022, 832: 155090.
21 Nordholt N, O’Hara K, Resch-Genger U, et al. A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria[J]. Front Microbiol, 2022, 13: 1023326.
22 De Silva M, Ning C, Ghanbar S, et al. Evidence that a novel quaternary compound and its organic N-chloramine derivative do not select for resistant mutants of Pseudomonas aeruginosa [J]. J Hosp Infect, 2015, 91(1): 53-58.
23 Dong A, Wang YJ, Gao YY, et al. Chemical insights into antibacterial N-halamines[J]. Chem Rev, 2017, 117(6): 4806-4862.
24 Tao BL, Shen XK, Yuan Z, et al. N-halamine-based multilayers on titanium substrates for antibacterial application[J]. Colloids Surf B Biointerfaces, 2018, 170: 382-392.
25 Wu SY, Xu JM, Zou LY, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection[J]. Nat Commun, 2021, 12(1): 3303.
26 Jamesh MI. Improved in vitro and in vivo corrosion resistance of Mg and Mg alloys by plasma ion implantation and deposition techniques-a mini-review[J]. Lubricants, 2022, 10(10): 255.
27 Akhtar M, Uzair SA, Rizwan M, et al. The improvement in surface properties of metallic implant via magnetron sputtering: recent progress and remai-ning challenges[J]. Front Mater, 2022, 8: 747169.
28 Pesode PA, Barve SB. Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process[J]. Mater Today Proc, 2021, 47: 5652-5662.
29 Esteves GM, Esteves J, Resende M, et al. Antimicrobial and antibiofilm coating of dental implants-past and new perspectives[J]. Antibiotics, 2022, 11(2): 235.
30 Han W, Fang SB, Zhong Q, et al. Influence of dental implant surface modifications on osseointegration and biofilm attachment[J]. Coatings, 2022, 12(11): 1654.
31 Durdu S, Yalçin E, Altinkök A, et al. Characterization and investigation of electrochemical and biolo-gical properties of antibacterial silver nanoparticle-deposited TiO2 nanotube array surfaces[J]. Sci Rep, 2023, 13(1): 4699.
32 Shahed CA, Ahmad F, Günister E, et al. Antibacte-rial mechanism with consequent cytotoxicity of diffe-rent reinforcements in biodegradable magnesium and zinc alloys: a review[J]. J Magnes Alloys, 2023, 11(9): 3038-3058.
33 Zhang XJ, Huang Y, Wang BB, et al. A functiona-lized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity[J]. Ceram Int, 2020, 46(10): 14796-14807.
34 Zhang XJ, Wang BB, Ma LF, et al. Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: a potential multifunctional biological coating[J]. Ceram Int, 2020, 46(17): 27758-27773.
35 Zhao YB, Shi LQ, Ji XJ, et al. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy[J]. J Colloid Interface Sci, 2018, 526: 43-50.
36 Ganjali M, Mousavi S, Nikzamir S, et al. Effect of laser cladded Co-doped strontium fluorapatite na-nopowder coating on the antibacterial and cell attachment of Ti-6Al-4V implants for bone applications[J]. Mater Technol, 2022, 37(8): 829-841.
37 Togawa G, Takahashi M, Tada H, et al. Development of ternary Ti-Ag-Cu alloys with excellent mechanical properties and antibiofilm activity[J]. Materials, 2022, 15(24): 9011.
38 Chen Y, Dou JH, Yu HJ, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements[J]. J Biomater Appl, 2019, 33(10): 1348-1372.
39 Li RY, Zhang HY, Yao XH, et al. Regulation of TiO2 nanoarrays on titanium implants for enhanced osteogenic activity and immunomodulation[J]. J Mater Sci Technol, 2023, 150: 233-244.
40 Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate[J]. Nano Lett, 2007, 7(6): 1686-1691.
41 Bandyopadhyay A, Shivaram A, Mitra I, et al. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration[J]. Acta Biomater, 2019, 96: 686-693.
42 Li T, Wang N, Chen S, et al. Antibacterial activity and cytocompatibility of an implant coating consis-ting of TiO2 nanotubes combined with a GL13K antimicrobial peptide[J]. Int J Nanomedicine, 2017, 12: 2995-3007.
43 Nowruzi F, Imani R, Faghihi S. Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of tita-nium substrates[J]. Sci Rep, 2022, 12: 8595.
44 Zhang GN, Zhang XY, Yang YQ, et al. Dual light-induced in situ antibacterial activities of biocompatible TiO2/MoS2PDA/RGD nanorod arrays on titanium[J]. Biomater Sci, 2020, 8(1): 391-404.
45 Ge X, Ren CZ, Ding YH, et al. Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications[J]. Bioact Mater, 2019, 4: 346-357.
46 Qi L, Guo BH, Lu Q, et al. Preparation and photocatalytic and antibacterial activities of micro/nanostructured TiO2-based photocatalysts for application in orthopedic implants[J]. Front Mater, 2022, 9: 914-905.
47 Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proc Natl Acad Sci U S A, 2009, 106(7): 2130-2135.
48 Bai L, Zhao Y, Chen PR, et al. Targeting early hea-ling phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J]. Small, 2021, 17(4): e2006287.
49 Cao X, Wu KY, Wang CY, et al. Graphene oxide loaded on TiO2-nanotube-modified Ti regulates the behavior of human gingival fibroblasts[J]. Int J Mol Sci, 2022, 23(15): 8723.
50 Li F, Pan QY, Ling Y, et al. Gold-Titanium dioxide heterojunction for enhanced sonodynamic mediated biofilm eradication and peri-implant infection treatment[J]. Chem Eng J, 2023, 460: 141791.
51 Reznickova A, Nguyenova HY, Zaruba K, et al. Gra-fting of silver nanospheres and nanoplates onto plasma activated PET: effect of nanoparticle shape on antibacterial activity[J]. Vacuum, 2022, 203: 111268.
52 Sehar S, Naz I, Rehman A, et al. Shape-controlled synthesis of cerium oxide nanoparticles for efficient dye photodegradation and antibacterial activities[J]. Appl Organomet Chem, 2021, 35(1): e6069.
53 Raza MA, Kanwal Z, Rauf A, et al. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes[J]. Nanomaterials, 2016, 6(4): 74.
54 Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli [J]. Appl Environ Microbiol, 2007, 73(6): 1712-1720.
55 Van Dong P, Ha CH, Binh LT, et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles[J]. Int Nano Lett, 2012, 2(1): 9.
56 Kheiri S, Liu XY, Thompson M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxico-logy[J]. Colloids Surf B Biointerfaces, 2019, 184: 110550.
57 Amor IB, Hemmami H, Laouini SE, et al. Biosynthesis MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications[J]. World J Microbiol Biotechnol, 2022, 39(1): 19.
58 Zhang XY, Li YX, Luo XB, et al. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam eva-poration[J]. J Mater Sci Mater Med, 2022, 33(7): 57.
59 Pérez-Tanoira R, Fernández-Arias M, Potel C, et al. Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multispecies biofilm formation[J]. Int J Mol Sci, 2022, 23(19): 12027.
60 Qing YA, Cheng L, Li RY, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies[J]. Int J Nanomedicine, 2018, 13: 3311-3327.
61 Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
62 Palmieri V, Bugli F, Lauriola MC, et al. Bacteria meet graphene: modulation of graphene oxide na-nosheet interaction with human pathogens for effective antimicrobial therapy[J]. ACS Biomater Sci Eng, 2017, 3(4): 619-627.
63 Zhang XY, Lu SX, He DM, et al. Antibacterial pro-perty of graphene quantum dots-modified TiO2 nanorods on titanium dental implant[J]. Trans Nonferrous Met Soc China, 2023, 33(8): 2395-2405.
64 Jang W, Kim HS, Alam K, et al. Direct-deposited graphene oxide on dental implants for antimicrobial activities and osteogenesis[J]. Int J Nanomedicine, 2021, 16: 5745-5754.
65 Tan J, Li L, Li BY, et al. Titanium surfaces modified with graphene oxide/gelatin composite coatings for enhanced antibacterial properties and biological activities[J]. ACS Omega, 2022, 7(31): 27359-27368.
66 Cheng Q, Lu R, Wang X, et al. Antibacterial activity and cytocompatibility evaluation of the antimicro-bial peptide Nal-P-113-loaded graphene oxide coating on titanium[J]. Dent Mater J, 2022, 41(6): 905-915.
67 Chen F, Luo Y, Liu X, et al. 2D molybdenum sulfide-based materials for photo-excited antibacterial application[J]. Adv Healthc Mater, 2022, 11(13): e2200360.
68 Yu SP, Zhang Q, Hu ML, et al. Study on optimizing novel antimicrobial peptides with bifunctional acti-vity to prevent and treat peri-implant disease[J]. Antibiotics, 2022, 11(11): 1482.
69 Acosta S, Ibañez-Fonseca A, Aparicio C, et al. Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections[J]. Biomater Sci, 2020, 8(10): 2866-2877.
70 Zhang YN, Zhang L, Li B, et al. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9449-9461.
71 Zarghami V, Ghorbani M, Pooshang Bagheri K, et al. Prolongation of bactericidal efficiency of chitosan-Bioactive glass coating by drug controlled release[J]. Prog Org Coat, 2020, 139: 105440.
72 Fan XL, Hu M, Qin ZH, et al. Bactericidal and hemocompatible coating via the mixed-charged copolymer[J]. ACS Appl Mater Interfaces, 2018, 10(12): 10428-10436.
[1] 李佳敏,李毓晨,葛张洁,廖凌子,郭鑫,郭晓龙,周平. 抗菌肽在口腔钛种植体涂层中的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 572-584.
[2] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[3] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[4] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[5] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[6] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[7] 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243.
[8] 杜桥 牛光良. 氧化锆的表面粗化和改性[J]. 国际口腔医学杂志, 2015, 42(1): 97-101.
[9] 林曦,周磊. 纯钛种植体表面特征的研究进展[J]. 国际口腔医学杂志, 2014, 41(6): 677-680.
[10] 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693.
[11] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[12] 郭晶 甘抗 刘红. 聚醚醚酮复合材料及其表面改性后的成骨效能[J]. 国际口腔医学杂志, 2014, 41(4): 436-439.
[13] 刘媛媛1 李果1 任家银1 赵书平1 聂晶2 王虎1. 纳米钛膜种植体-骨界面的骨整合研究[J]. 国际口腔医学杂志, 2012, 39(3): 312-316.
[14] 杜锦锦综述 汪大林审校. 牙科钛及钛合金的表面改性新进展[J]. 国际口腔医学杂志, 2010, 37(6): 703-706.
[15] 徐玮综述 赵克, 张新平审校. 牙科镍钛形状记忆合金的表面改性[J]. 国际口腔医学杂志, 2010, 37(02): 221-221~224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李锋 谢小燕. 右侧下颌第四磨牙1例[J]. 国际口腔医学杂志, 2016, 43(1): 36 .