国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (5): 596-607.doi: 10.7518/gjkq.2024054

• 论著 • 上一篇    下一篇

载黄连素的同轴静电纺丝膜对牙周致病菌及生物膜的抑菌性研究

张睿1(),郝婷1,吕闻1,任双双2,刘玉3,吴文蕾3,孙卫斌1()   

  1. 1.南京大学医学院附属口腔医院 南京市口腔医院牙周病科 南京大学口腔医学研究所 南京 210008
    2.南京大学医学院附属口腔医院;南京市口腔医院牙体牙髓病科;南京大学口腔医学研究所 南京 210008
    3.南京大学医学院附属口腔医院;南京市口腔医院高级专家诊疗科;南京大学口腔医学研究所 南京 210008
  • 收稿日期:2024-01-25 修回日期:2024-06-13 出版日期:2024-09-01 发布日期:2024-09-14
  • 通讯作者: 孙卫斌
  • 作者简介:张睿,住院医师,硕士,Email:zzzrrr2008@163.com
  • 基金资助:
    国家自然科学基金面上项目(51972167)

Antibacterial property of berberine-loaded coaxial electrospun membranes against periodontal pathogens and biofilms

Rui Zhang1(),Ting Hao1,Lü Wen1,Shuangshuang Ren2,Yu Liu3,Wenlei Wu3,Weibin Sun1()   

  1. 1.Dept. of Periodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
    2.Dept. of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
    3.Dept. of Senior Specialist, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
  • Received:2024-01-25 Revised:2024-06-13 Online:2024-09-01 Published:2024-09-14
  • Contact: Weibin Sun
  • Supported by:
    National Natural Science Foundation of China(51972167)

摘要:

目的 制备并表征负载黄连素的同轴静电纺丝膜,评价其体外抑制牙周致病菌和生物膜的作用。 方法 采用同轴静电纺丝法制备负载黄连素的聚己内酯/明胶膜(PCL/Gel-BBR)并对其进行表征检测,黄连素负载质量分数分别为0.25%、0.5%、1.0%。通过抑菌试验评价载药膜对牙龈卟啉单胞菌(P. gingivalis,ATCC 33277)及具核梭杆菌(F. nucleatum,ATCC 25586)增殖的抑制作用。采用结晶紫染色法、苯酚-硫酸法、菌落计数法、活/死细菌染色等综合评价载药膜对P. gingivalisF. nucleatum双菌种生物膜的影响。采用CCK-8法和共聚焦显微镜检测载药膜的细胞毒性。 结果 同轴黄连素载药膜理化性能良好且能在体外稳定释放黄连素。1.0%黄连素载药膜可以有效抑制P. gingivalisF. nucleatum的增殖,对双菌种生物膜的形成和活性也有抑制作用,且以上效应呈现浓度依赖性。黄连素载药膜体外生物相容性良好。 结论 负载黄连素的同轴静电纺丝膜具备体外抑制牙周致病菌进而抑制生物膜形成的作用,生物相容性良好,有望用于牙周药物递送以辅助牙周炎治疗或预防牙周术后感染。

关键词: 黄连素, 同轴静电纺丝, 牙龈卟啉单胞菌, 生物膜

Abstract:

Objective This study aimed to prepare berberine-loaded coaxial electrospun membranes, evaluate their antibacterial effects against periodontal pathogens, and explore their inhibitory effect on biofilm formation in vitro. Me-thods Coaxial polycaprolactone/gelatin electrospun membranes loaded with berberine (drug loading capacity of 0.25%, 0.5% and 1.0%, respectively) were fabrica-ted and characterized. The bacteriostatic zone test was used to evaluate the antibacterial effect against Porphyromonas gingivalis (ATCC 33277) and Fusobacterium nucleatum (ATCC 25586). Crystal violet staining, phenol-sulfuric acid method, colony counting method, and live/dead cell staining were used to comprehensively evaluate the inhibitory effect of drug-loaded electrospun membranes on biofilm formation. The cell counting kit-8 and confocal microscopy me-thods was used to evaluate the biocompatibility of electrospun membranes. Results The berberine-loaded electrospun membranes had stable physicochemical properties, and they could release berberine in vitro. The membranes (drug loa-ding capacity of 1.0%) exhibited efficient antibacterial activity against Porphyromonas gingivalis and Fusobacterium nucleatum, and inhibited the formation of biofilms in a concentration-dependent manner. The berberine-loaded membranes had good biocompatibility in vitro. Conclusion The berberine-loaded coaxial electrospun membranes were biocompatible, and they had an antibacterial potential against periodontal pathogens and biofilm formation in vitro. Therefore, it was promising to use berberine-loaded membranes as adjunctive therapy or to prevent postoperative infection.

Key words: berberine, coaxial electrospinning, Porphyromonas gingivalis, biofilm

中图分类号: 

  • R781.4

图1

PCL/Gel和PCL/Gel-BBR-H纤维膜的表征A:PCL/Gel纤维膜 SEM × 20 000;B:PCL/Gel纤维膜大体观察;C:PCL/Gel-BBR-H纤维膜 SEM × 20 000;D:PCL/Gel-BBR-H纤维膜大体观察;E:PCL/Gel-BBR-H 纤维膜同轴结构 TEM × 100 000;F:PCL/Gel的X射线能谱分析;G:水接触角;H:应力-应变曲线;I:XRD图谱;J:傅里叶红外光谱图谱。"

图2

载药膜的黄连素释放曲线"

图3

载药膜体外抑菌效果A:P. gingivalis平板的抑菌圈,左为PCL/Gel膜,右为PCL/Gel-BBR-H膜;B:P. gingivalis抑菌圈直径;C:不同质量分数载药膜与P. gingivalis共培养后的OD值; D:F. nucleatum平板的抑菌圈,左为PCL/Gel膜,右为PCL/Gel-BBR-H膜;E:F. nucleatum抑菌圈直径;F:不同质量分数载药膜与F. nucleatum共培养后的OD值。Control:对照(无纤维膜)组;ns:P>0.05;**:P<0.01;***:P<0.001。"

图4

载药膜与P. gingivalis和F. nucleatum共培养下的细菌生物膜生物量A:对照组;B:PCL/Gel;C:PCL/Gel-BBR-L;D:PCL/Gel-BBR-M;E:PCL/Gel-BBR-H;F:不同质量分数载药膜与P. gingivalis和F. nucleatum菌液共培养后的OD值。Control:对照(无纤维膜)组;ns:P>0.05;***:P<0.001。"

图5

载药膜与P. gingivalis和F. nucleatum共培养下细菌生物膜EPS含量A:不同质量分数载药膜与P. gingivalis和F. nucleatum共培养;B:共培养后生物膜的EPS含量测定结果。Control:对照(无纤维膜)组;ns:P>0.05;*:P<0.05;**:P<0.01;***:P<0.001。"

图 6

载药膜与P. gingivalis和F. nucleatum共培养下细菌生物膜的细菌密度及菌落形成能力A:PCL/Gel;B:PCL/Gel-BBR-L;C:PCL/Gel-BBR-M;D:PCL/Gel-BBR-H;E:不同质量分数载药膜与P. gingivalis和F. nucleatum菌液共培养后的OD值;F:不同质量分数载药膜与P. gingivalis和F. nucleatum菌液共培养后的菌落计数结果。**:P<0.01,***:P<0.001。"

图7

载药膜与P. gingivalis和F. nucleatum共培养条件下,生物膜的活/死细菌染色FITC:绿色荧光通道,标记活细菌;TRITC:红色荧光通道,标记死细菌;Merge:合并图层后同时显示活细菌和死细菌。"

图8

载药膜与P. gingivalis和F. nucleatum共培养下,生物膜细菌的表面形态 SEMA:PCL/Gel × 5 000;B:PCL/Gel-BBR-L × 5 000;C:PCL/Gel-BBR-M × 5 000;D:PCL/Gel-BBR-H × 5 000;E:PCL/Gel-BBR-H × 50 000;F:PCL/Gel-BBR-H × 100 000。箭头示核分裂象。"

图9

载药膜共培养条件下细胞的相对增殖活性A:RAW264.7的细胞活性;B:hPDLSC的细胞活性。Contnsl:对照(无纤维膜)组;ns:P>0.05;*:P<0.05;***:P<0.001。"

图10

细胞在载药膜表面的黏附形态 共聚焦显微镜 × 10 000上:hPDLSC;下:RAW264.7;左:罗丹明-鬼笔环肽标记的细胞骨架;中:DAPI标记的细胞核;右:图层合并(Merge)。"

《孕期口腔保健与治疗》出版发行"

1 Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and propo-sal of a new classification and case definition[J]. J Periodontol, 2018, 89(): S159-S172.
2 Righolt AJ, Jevdjevic M, Marcenes W, et al. Glo-bal-, regional-, and country-level economic impacts of dental diseases in 2015[J]. J Dent Res, 2018, 97(5): 501-507.
3 Asa’ad F, Pagni G, Pilipchuk SP, et al. 3D-printed scaffolds and biomaterials: review of alveolar bone augmentation and periodontal regeneration applications[J]. Int J Dent, 2016, 2016: 1239842.
4 Nowzari H, MacDonald ES, Flynn J, et al. The dynamics of microbial colonization of barrier membranes for guided tissue regeneration[J]. J Periodontol, 1996, 67(7): 694-702.
5 Koushki P, Bahrami SH, Ranjbar-Mohammadi M. Coaxial nanofibers from poly(caprolactone)/poly(vinyl alcohol)/thyme and their antibacterial properties[J]. J Ind Text, 2018, 47(5): 834-852.
6 Nguyen TTT, Chung OH, Park JS. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) compo-site nanofibers and their antibacterial activity[J]. Carbohydr Polym, 2011, 86(4): 1799-1806.
7 柳玉梅, 宋亚, 吴娟, 等. 黄连素温敏水凝胶的制备及其对牙周致病菌的抑菌作用评价[J]. 口腔生物医学, 2020, 11(2): 97-101.
Liu YM, Song Y, Wu J, et al. Preparation of berbe-rine-loaded thermo-sensitive hydrogels and evaluation of its antibacterial effect on periodontal bacteria[J]. Oral Biomed, 2020, 11(2): 97-101.
8 Zhang R, Yang J, Wu J, et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regene-ration[J]. Eur J Pharmacol, 2019, 851: 144-150.
9 Chen HQ, Liu Q, Liu XQ, et al. Berberine attenua-tes septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats[J]. Pharm Biol, 2021, 59(1): 121-128.
10 Gu HL, Liu AG, Ma WP, et al. Berberine hydrochloride mitigates acute pancreatitis by suppressing the TLR4/IκBα/NFκB pathway[J]. Life, 2020, 13(1): 276-285.
11 Yang T, Wang RL, Liu HH, et al. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis[J]. Life Sci, 2021, 266: 118903.
12 Xu RD, Zhao HL, Muhammad H, et al. Dual-deli-very of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis[J]. Sci Rep, 2017, 7(1): 8509.
13 Ding T, Li JH, Zhang XS, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration[J]. Biomater Sci, 2020, 8(9): 2459-2471.
14 Siddiqui N, Asawa S, Birru B, et al. PCL-based composite scaffold matrices for tissue engineering applications[J]. Mol Biotechnol, 2018, 60(7): 506-532.
15 Li RJ, Ma YL, Zhang Y, et al. Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells[J]. Colloids Surf B Biointerfaces, 2018, 169: 384-394.
16 Zandi N, Lotfi R, Tamjid E, et al. Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110432.
17 Gilani S, Mir S, Masood M, et al. Triple-component nanocomposite films prepared using a casting me-thod: its potential in drug delivery[J]. J Food Drug Anal, 2018, 26(2): 887-902.
18 Salević A, Stojanović D, Lević S, et al. The structu-ring of sage (Salvia officinalis L.) extract-incorpora-ting edible zein-based materials with antioxidant and antibacterial functionality by solvent casting versus electrospinning[J]. Foods, 2022, 11(3): 390.
19 Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: a materials perspective[J]. Dent Mater, 2012, 28(7): 703-721.
20 Hwang PTJ, Murdock K, Alexander GC, et al. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering[J]. J Biomed Mater Res A, 2016, 104(4): 1017-1029.
21 Alissa Alam H, Dalgic AD, Tezcaner A, et al. A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering[J]. Int J Polym Mater Polym Biomater, 2020, 69(6): 339-350.
22 Yao RJ, He J, Meng GL, et al. Electrospun PCL/Gela-tin composite fibrous scaffolds: mechanical properties and cellular responses[J]. J Biomater Sci Polym Ed, 2016, 27(9): 824-838.
23 Nibali L, Buti J, Barbato L, et al. Adjunctive effect of systemic antibiotics in regenerative/reconstructive periodontal surgery-a systematic review with meta-analysis[J]. Antibiotics, 2021, 11(1): 8.
24 Khan MA, Sivaraj LD, Nahar P, et al. Efficacy of adjunctives in periodontal surgeries: an evidenced-based summary[J]. J Long Term Eff Med Implants, 2022, 32(4): 63-82.
25 邱艳梅, 李金陆, 连增林, 等. 黄连对牙髓卟啉单胞菌抑菌作用的体外研究[J]. 北京口腔医学, 2011, 19(2): 92-94.
Qiu YM, Li JL, Lian ZL, et al. Antimicrobial activity of coptis on Porphyromonas endodontalis in vitro [J]. Beijing J Stomatol, 2011, 19(2): 92-94.
26 Boberek JM, Stach J, Good L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine[J]. PLoS One, 2010, 5(10): e13745.
27 Barrows JM, Goley ED. FtsZ dynamics in bacterial division: what, how, and why[J]. Curr Opin Cell Biol, 2021, 68: 163-172.
28 Di Somma A, Canè C, Rotondo NP, et al. A compara-tive study of the inhibitory action of berberine deri-vatives on the recombinant protein FtsZ of E. coli [J]. Int J Mol Sci, 2023, 24(6): 5674.
29 Akinpelu OI, Kumalo HM, Mhlongo SI, et al. Identifying the analogues of berberine as promising antitubercular drugs targeting Mtb-FtsZ polymerisation through ligand-based virtual screening and molecular dynamics simulations[J]. J Mol Recognit, 2022, 35(2): e2940.
30 Sun N, Chan FY, Lu YJ, et al. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity[J]. PLoS One, 2014, 9(5): e97514.
31 Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action[J]. Virulence, 2018, 9(1): 522-554.
32 Wang XQ, Yao X, Zhu ZA, et al. Effect of berberine on Staphylococcus epidermidis biofilm formation[J]. Int J Antimicrob Agents, 2009, 34(1): 60-66.
33 Pang YS, Wang S, Tao JY, et al. Mechanism of berberine hydrochloride interfering with biofilm formation of Hafnia alvei [J]. Arch Microbiol, 2022, 204(2): 126.
34 Sun H, Huang SY, Jeyakkumar P, et al. Natural berberine-derived azolyl ethanols as new structural antibacterial agents against drug-resistant Escherichia coli [J]. J Med Chem, 2022, 65(1): 436-459.
35 Guo N, Zhao XC, Li WL, et al. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures[J]. J Med Microbiol, 2015, 64(8): 891-900.
[1] 毛鸿晨,王铮,杨德琴. 牙龈卟啉单胞菌外膜囊泡在口腔疾病中的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 608-615.
[2] 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520.
[3] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[4] 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403.
[5] 黄培勍,彭显,徐欣. 口腔挥发性硫化物的产生与针对性防治的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 592-599.
[6] 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311.
[7] 雷双,庾靖君,唐晓琳. 牙龈卟啉单胞菌对不同组织来源血管内皮细胞的作用及机制的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 23-28.
[8] 张明爽,巴特,王文标. 口腔微生物种群与阿尔茨海默病相关发病机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 102-108.
[9] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[10] 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674.
[11] 杨子,侯本祥. 持续性根尖周炎根管内外生物膜特性的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 238-243.
[12] 房宏志, 田媛媛, 喻譞, 杨英明, 杨惠, 胡涛. 不同蔗糖浓度下外源性右旋糖酐酶与氟化钠对粘放线菌生物膜的影响[J]. 国际口腔医学杂志, 2017, 44(6): 654-659.
[13] 李格格, 潘佳慧, 唐秋玲, 刘歆婵, 侯玉帛, 于维先. 牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制[J]. 国际口腔医学杂志, 2017, 44(5): 519-522.
[14] 潘佳慧, 唐秋玲, 李格格, 侯玉帛, 于维先. 巨噬细胞极化在牙龈卟啉单胞菌促进牙周炎发生发展中的作用[J]. 国际口腔医学杂志, 2017, 44(5): 533-537.
[15] 刘诗雨, 田宓, 石黎冉, 潘韦霖, 王一尧, 李明云. 尼古丁和美卡拉明对牙周致病微生物的影响[J]. 国际口腔医学杂志, 2017, 44(4): 421-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜曚 张玲综述 李继遥 柳茜审校. 口腔医生的骨骼肌肉系统疾病研究进展[J]. 国际口腔医学杂志, 2013, 40(2): 249 -252 .
[2] 刘怡,王松灵,. 口腔特有的成体干细胞的研究进展[J]. 国际口腔医学杂志, 2006, 33(02): 110 -113 .
[3] 马亮综述 王胜朝,张亚庆审校. 表观遗传学在牙齿形态发生中的作用[J]. 国际口腔医学杂志, 2010, 37(4): 447 -450 .
[4] 闫乐,侯建霞. 龈下清创术与根面平整术[J]. 国际口腔医学杂志, 2021, 48(1): 29 -34 .