国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (1): 102-108.doi: 10.7518/gjkq.2020012
Zhang Mingshuang1,2,Ba Te2,Wang Wenbiao1,2,()
摘要:
口腔微生物种群如细菌、真菌等能引起龋病和牙周病等一系列口腔疾病,其代谢产物能进入血液,引起系统性炎症。阿尔茨海默病(AD)是一种中枢神经系统变性疾病,是痴呆症最常见的形式。据世界卫生组织统计,AD占痴呆症病例的60%~70%,并且其发病率仍在逐年攀升,给全球社会经济造成沉重负担。AD的临床病理特征为β-淀粉样蛋白沉积(Aβ)形成细胞外老年斑、tau蛋白过度磷酸化引起神经原纤维缠结,以及神经元丢失伴胶质细胞增生等。但目前为止,AD的病因及发病机制尚未阐明。近期研究发现,引起慢性牙周炎的微生物种群是Aβ沉积和AD发病的重大风险因素。因此,本文围绕口腔微生物种群与AD潜在的发病机制进行综述。
中图分类号:
6 | 参考文献 |
[1] | Fung TC, Olson CA, Hsiao EY . Interactions between the microbiota, immune and nervous systems in health and disease[J]. Nat Neurosci, 2017,20(2):145-155. |
[2] | Tcw J . Human iPSC application in Alzheimer’s disease and Tau-related neurodegenerative diseases[J]. Neurosci Lett, 2019,699:31-40. |
[3] | Mysak J, Podzimek S, Sommerova P , et al. Porphyro-monas gingivalis: major periodontopathic pathogen overview[J]. J Immunol Res, 2014,2014:476068. |
[4] | Jia JP, Wei CB, Chen SQ , et al. The cost of Alzheimer’s |
disease in China and re-estimation of costs worldwid [J]. Alzheimers Dement, 2018,14(4):483-491. | |
[5] | Olsen I, Yilmaz Ö . Possible role of Porphyromonas gingivalis in orodigestive cancers[J]. J Oral Micro-biol, 2019,11(1):1563410. |
[6] | Karpiński TM . Role of oral microbiota in cancer de- velopment[J]. Microorganisms, 2019,7(1):E20. |
[7] | Cai J, Chen JM, Guo HX , et al. Recombinant fim-briae protein of Porphyromonas gingivalis induces an inflammatory response via the TLR4/NF-κB signaling pathway in human peripheral blood mo-nonuclear cells[J]. Int J Mol Med, 2019,43(3):1430-1440. |
[8] | Ohtsu A, Takeuchi Y, Katagiri S , et al. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice[J]. Oral Dis, 2019,25(3):868-880. |
[9] | Ayala-Herrera JL, Abud-Mendoza C, Gonzalez-Amaro RF , et al. Distribution of Porphyromonas gingivalis fimA genotypes in patients affected by rheumatoid arthritis and periodontitis[J]. Acta Odontol Scand, 2018,76(7):520-524. |
[10] | Bale BF, Doneen AL, Vigerust DJ . High-risk perio-dontal pathogens contribute to the pathogenesis of atherosclerosis[J]. Postgrad Med J, 2017,93(1098):215-220. |
[11] | Moazzam AA, Rajagopal SM, Sedghizadeh PP , et al. Intracranial bacterial infections of oral origin[J]. J Clin Neurosci, 2015,22(5):800-806. |
[12] | Bredesen DE . Metabolic profiling distinguishes three subtypes of Alzheimer’s disease[J]. Aging (Albany NY), 2015,7(8):595-600. |
[13] | Holmer J, Eriksdotter M, Schultzberg M , et al. Asso-ciation between periodontitis and risk of Alzheimer’s disease, mild cognitive impairment and subjective cognitive decline: a case-control study[J]. J Clin Pe-riodontol, 2018,45(11):1287-1298. |
[14] | Williams TL, Day IJ, Serpell LC . The effect of Alzheimer’s Aβ aggregation state on the permeation of biomimetic lipid vesicles[J]. Langmuir, 2010,26(22):17260-17268. |
[15] | Singhrao SK, Olsen I . Are Porphyromonas gingivalis outer membrane vesicles microbullets for sporadic Alzheimer’s disease manifestation[J]. J Alzheimers Dis Rep, 2018,2(1):219-228. |
[16] | Teixeira FB, Saito MT, Matheus FC , et al. Perio-dontitis and Alzheimer’s disease: a possible comor-bidity between oral chronic inflammatory condition and neuroinflammation[J]. Front Aging Neurosci, 2017,9:327. |
[17] | Koren O, Spor A, Felin J , et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis[J]. Proc Natl Acad Sci U S A, 2011,108(Suppl 1):4592-4598. |
[18] | 唐智群, 梁丹, 成杪莹 , 等. 牙周炎与阿尔兹海默症相关性研究进展[J]. 中国实用口腔科杂志, 2018,11(1):52-56. |
Tang ZQ, Liang D, Cheng MY , et al. Research pro-gress in the association between Alzheimer’s disease and periodontitis[J]. Chin J Pract Stomatol, 2018,11(1):52-56. | |
[19] | Singhrao SK, Harding A, Poole S , et al. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease[J]. Mediat Inflamm, 2015,2015:1-10. |
[20] | Roselaar SE, Daugherty A . Apolipoprotein E-deficient mice have impaired innate immune responses to Lis- teria monocytogenes in vivo[J]. J Lipid Res, 1998,39(9):1740-1743. |
[21] | de Bont N, Netea MG, Demacker PN , et al. Apolipo-protein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection[J]. J Lipid Res, 1999,40(4):680-685. |
[22] | Noble JM, Scarmeas N, Celenti RS , et al. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease[J]. PLoS One, 2014,9(12):e114959. |
[23] | Singhrao SK, Chukkapalli S, Poole S , et al. Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE -/- mice brains[J]. J Oral Microbiol, 2017,9(1):1270602. |
[24] | Ishida N, Ishihara Y, Ishida K , et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice[J]. Npj Aging Mech Dis, 2017,3:15. |
[25] | Gui MJ, Dashper SG, Slakeski N , et al. Spheres of influence: Porphyromonas gingivalis outer mem-brane vesicles[J]. Mol Oral Microbiol, 2016,31(5):365-378. |
[26] | Kamer AR, Pirraglia E, Tsui W , et al. Periodontal disease associates with higher brain amyloid load in normal elderly[J]. Neurobiol Aging, 2015,36(2):627-633. |
[27] | Ide M, Harris M, Stevens A , et al. Periodontitis and cognitive decline in Alzheimer’s disease[J]. PLoS One, 2016,11(3):e0151081. |
[28] | Miklossy J . Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease[J]. Front Aging Neurosci, 2015,7:46. |
[29] | Maheshwari P, Eslick GD . Bacterial infection and Al-zheimer’s disease: a meta-analysis[J]. J Alzheimers Dis, 2015,43(3):957-966. |
[30] | Riviere GR, Riviere KH, Smith KS . Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease[J]. Oral Microbiol Immunol, 2002,17(2):113-118. |
[31] | Sakai K, Fukuda T, Iwadate K , et al. A fatal fall asso-ciated with undiagnosed parenchymatous neurosy-philis[J]. Am J Forensic Med Pathol, 2014,35(1):4-7. |
[32] | Song J, Lee JE . MiR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function[J]. Front Aging Neurosci, 2015,7:61. |
[33] | Miklossy J . Chronic inflammation and amyloidogenesis in Alzheimer’s disease: role of Spirochetes[J]. J Alzheimers Dis, 2008,13(4):381-391. |
[34] | Lukehart SA ,Hook EW 3rd,Baker-Zander SA, et al.Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment[J].Ann Intern Med, 1988,109(11):855-862. |
[35] | 陈渠奕, 林路得, 斯灵 , 等. 口腔微生物群和人体健康[J]. 中国微生态学杂志, 2017,29(10):1219-1224. |
Chen QY, Lin LD, Si L , et al. Oral microbiota and human health[J]. Chin J Microecol, 2017,29(10):1219-1224. | |
[36] | Wang QQ, Zhang CF, Chu CH , et al. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis[J]. Int J Oral Sci, 2012,4(1):19-23. |
[37] | Underly R, Song MS, Dunbar GL , et al. Expression of Alzheimer-type neurofibrillary epitopes in primary rat cortical neurons following infection with Ente-rococcus faecalis[J]. Front Aging Neurosci, 2015,7:259. |
[38] | Letenneur L, Pérès K, Fleury H , et al. Seropositivity to herpes simplex virus antibodies and risk of Al-zheimer’s disease: a population-based cohort study[J]. PLoS One, 2008,3(11):e3637. |
[39] | Itzhaki RF, Cosby SL, Wozniak MA . Herpes simplex virus type 1 and Alzheimer’s disease: the autophagy connection[J]. J Neurovirol, 2008,14(1):1-4. |
[40] | Meer-Scherrer L, Chang Loa C, Adelson ME , et al. Lyme disease associated with Alzheimer’s disease[J]. Curr Microbiol, 2006,52(4):330-332. |
[41] | Woodbury ME, Freilich RW, Cheng CJ , et al. Mir- 155 is essential for inflammation-induced hippo-campal neurogenic dysfunction[J]. J Neurosci, 2015,35(26):9764-9781. |
[42] | Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK , et al. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection[J]. Neuron, 2018, 99(1): 56-63.e3. |
[43] | Lewis RE . Overview of the changing epidemiology of candidemia[J]. Curr Med Res Opin, 2009,25(7):1732-1740. |
[44] | Kumar J, Sharma R, Sharma M , et al. Presence of Candida albicans in root canals of teeth with apical periodontitis and evaluation of their possible role in failure of endodontic treatment[J]. J Int Oral Health, 2015,7(2):42-45. |
[45] | Alonso R, Pisa D, Marina AI , et al. Fungal infection in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2014,41(1):301-311. |
[46] | Alonso R, Pisa D, Rábano A , et al. Alzheimer’s disease and disseminated mycoses[J]. Eur J Clin Microbiol Infect Dis, 2014,33(7):1125-1132. |
[47] | Pisa D, Alonso R, Juarranz A , et al. Direct visualiza-tion of fungal infection in brains from patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2015,43(2):613-624. |
[48] | Ranjan R, Abhinay A, Mishra M . Can oral microbial infections be a risk factor for neurodegeneration? A review of the literature[J]. Neurol India, 2018,66(2):344-351. |
[1] | 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403. |
[2] | 雷双,庾靖君,唐晓琳. 牙龈卟啉单胞菌对不同组织来源血管内皮细胞的作用及机制的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 23-28. |
[3] | 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674. |
[4] | 李格格, 潘佳慧, 唐秋玲, 刘歆婵, 侯玉帛, 于维先. 牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制[J]. 国际口腔医学杂志, 2017, 44(5): 519-522. |
[5] | 潘佳慧, 唐秋玲, 李格格, 侯玉帛, 于维先. 巨噬细胞极化在牙龈卟啉单胞菌促进牙周炎发生发展中的作用[J]. 国际口腔医学杂志, 2017, 44(5): 533-537. |
[6] | 刘诗雨, 田宓, 石黎冉, 潘韦霖, 王一尧, 李明云. 尼古丁和美卡拉明对牙周致病微生物的影响[J]. 国际口腔医学杂志, 2017, 44(4): 421-425. |
[7] | 侯玉帛1 刘歆婵2 于海燕1 崔磊华3 于维先4. 牙龈蛋白及其对破骨和成骨细胞功能的影响[J]. 国际口腔医学杂志, 2016, 43(5): 609-613. |
[8] | 韩志强,柏扬,肖水清,孙菲,何萍. 牙龈卟啉单胞菌及其牙龈蛋白酶K对青少年牙龈健康的影响[J]. 国际口腔医学杂志, 2016, 43(3): 283-287. |
[9] | 石晶,闫征斌,侯景秋,彭惠. 无托槽隐形矫治与传统固定矫治对牙周变异链球菌和牙龈卟啉单胞菌的影响[J]. 国际口腔医学杂志, 2016, 43(2): 151-154. |
[10] | 肖莉1 林玉祥2 葛颂3. 牙龈卟啉单胞菌菌毛蛋白的重组及表达[J]. 国际口腔医学杂志, 2015, 42(6): 655-658. |
[11] | 王昆 申道南 吴亚菲 赵蕾. 牙龈卟啉单胞菌相关牙周炎疫苗有效免疫原及其途径和佐剂[J]. 国际口腔医学杂志, 2015, 42(3): 328-333. |
[12] | 耿奉雪 潘亚萍. 生物膜中不同定植阶段细菌间的相互作用及模型[J]. 国际口腔医学杂志, 2014, 41(4): 431-435. |
[13] | 林牧 任秀云 常乐 岳姿洁 石学雪 孙丽莉. 大鼠慢性牙周炎模型中牙龈卟啉单胞菌的检测[J]. 国际口腔医学杂志, 2013, 40(5): 572-576. |
[14] | 王依玮综述 刘大力 束蓉审校. 牙龈卟啉单胞菌的荚膜及其免疫原性[J]. 国际口腔医学杂志, 2013, 40(4): 540-543. |
[15] | 胡玲静1,2 张迪亚2 陈莉丽1. 牙龈卟啉单胞菌蛋白酶R与蛋白酶激活受体在牙周炎中的作用[J]. 国际口腔医学杂志, 2013, 40(1): 86-89. |
|