国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (5): 572-584.doi: 10.7518/gjkq.2024070
李佳敏1,2(),李毓晨1,2,葛张洁2,3,廖凌子1,2,郭鑫1,2,郭晓龙1,2,周平1,2,4(
)
Jiamin Li1,2(),Yuchen Li1,2,Zhangjie Ge2,3,Lingzi Liao1,2,Xin Guo1,2,Xiaolong Guo1,2,Ping Zhou1,2,4(
)
摘要:
口腔钛种植体的临床需求与日俱增,为预防种植体周疾病、提高种植成功率,种植体的表面修饰是目前研究的一大热点。影响种植体远期治疗效果的主要因素是种植体周炎所导致的骨丧失,理想的种植体应在具有良好的抗菌性能的同时,具备优异的骨整合性能。与传统涂层相比,抗菌肽(AMP)具有优良的抗菌性能等多方面优势。本文介绍了种植体周疾病的发病机制和AMP的分类及作用机制,并从增强抗菌性能、促进骨结合、响应种植体周围组织变化这三方面对现有种植体表面AMP涂层作一综述,以期为AMP涂层研究的优化及其临床转化指明方向。
中图分类号:
1 | Gorr SU. Antimicrobial peptides of the oral cavity[J]. Periodontol 2000, 2009, 51: 152-180. |
2 | 张玉梅. 浅谈钛种植体抗菌涂层[J]. 口腔材料器械杂志, 2012, 21(2): 61-64. |
Zhang YM. Brief introduction of antibactenial coa-tings on titanium implants[J]. Chin J Dent Mater Devices, 2012, 21(2): 61-64. | |
3 | 夏春雨, 王宏远. Er: YAG激光在治疗种植体周围炎中的研究进展[J]. 口腔颌面修复学杂志, 2023, 24(2): 154-160. |
Xia CY, Wang HY. Research progress of Er: YAG laser in the treatment of peri-implantitis[J]. Chin J Prosthodont, 2023, 24(2): 154-160. | |
4 | Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications[J]. Acta Biomater, 2019, 83: 37-54. |
5 | Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8(1): 48. |
6 | Seo MD, Won HS, Kim JH, et al. Antimicrobial peptides for therapeutic applications: a review[J]. Molecules, 2012, 17(10): 12276-12286. |
7 | Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment[J]. Pharmacol Ther, 2018, 183: 160-176. |
8 | Luo Y, Song YZ. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401. |
9 | He M, Zhang HN, Li YJ, et al. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and interferon pathway[J]. Front Immunol, 2018, 9: 722. |
10 | Tonk M, Pierrot C, Cabezas-Cruz A, et al. The Drosophila melanogaster antimicrobial peptides Mtk-1 and Mtk-2 are active against the malarial parasite Plasmodium falciparum [J]. Parasitol Res, 2019, 118(6): 1993-1998. |
11 | Peng JJ, Xiao YL, Wan XP, et al. Enhancement of immune response and anti-infection of mice by porcine antimicrobial peptides and interleukin-4/6 fusion gene encapsulated in chitosan nanoparticles[J]. Vaccines (Basel), 2020, 8(3): 552. |
12 | Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: current developments and future prospects[J]. Acta Biomater, 2020, 103: 52-67. |
13 | Wang C, Hong TT, Cui PF, et al. Antimicrobial peptides towards clinical application: delivery and for-mulation[J]. Adv Drug Deliv Rev, 2021, 175: 113818. |
14 | 李谣华, 曾凤娇, 陈彬, 等. 药物涂层预防种植体周围炎的研究与进展[J]. 中国组织工程研究, 2023, 27(30): 4912-4920. |
Li YH, Zeng FJ, Chen B, et al. Research advances in drug coatings for prevention of peri-implantitis[J]. Chin J Tissue Eng Res, 2023, 27(30): 4912-4920. | |
15 | Atieh MA, Alsabeeha NH, Faggion CM Jr, et al. The frequency of peri-implant diseases: a systema-tic review and meta-analysis[J]. J Periodontol, 2013, 84(11): 1586-1598. |
16 | Fragkioudakis I, Tseleki G, Doufexi AE, et al. Current concepts on the pathogenesis of peri-implantitis: a narrative review[J]. Eur J Dent, 2021, 15(2): 379-387. |
17 | Faveri M, Figueiredo LC, Shibli JA, et al. Microbiological diversity of peri-implantitis biofilms[J]. Adv Exp Med Biol, 2015, 830: 85-96. |
18 | 程磊, 于海洋, 吴尧, 等. 牙种植体周围微生物研究[J]. 华西口腔医学杂志, 2019, 37(1): 7-12. |
Cheng L, Yu HY, Wu Y, et al. A review of peri-implant microbiology[J]. West China J Stomatol, 2019, 37(1): 7-12. | |
19 | Zheng H, Xu LX, Wang ZC, et al. Subgingival microbiome in patients with healthy and ailing dental implants[J]. Sci Rep, 2015, 5: 10948. |
20 | Gazil V, Bandiaky ON, Renard E, et al. Current data on oral peri-implant and periodontal microbiota and its pathological changes: a systematic review[J]. Microorganisms, 2022, 10(12): 2466. |
21 | Sahrmann P, Gilli F, Wiedemeier DB, et al. The microbiome of peri-implantitis: a systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5): 661. |
22 |
Koyanagi T, Sakamoto M, Takeuchi Y, et al. Analysis of microbiota associated with peri-implantitis u-sing 16S rRNA gene clone library[J]. J Oral Microbiol, 2010, 2. doi: 10.3402/jom.v2i0.5104 .
doi: 10.3402/jom.v2i0.5104 |
23 | Lafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review[J]. J Periodontol, 2017, 88(10): 1066-1089. |
24 | Albertini M, López-Cerero L, O’Sullivan MG, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis[J]. Clin Oral Implants Res, 2015, 26(8): 937-941. |
25 | Canullo L, Peñarrocha-Oltra D, Covani U, et al. Microbiologic and clinical findings of implants in healthy condition and with peri-implantitis[J]. Int J Oral Maxillofac Implants, 2015, 30(4): 834-842. |
26 | Alves CH, Russi KL, Rocha NC, et al. Host-microbiome interactions regarding peri-implantitis and dental implant loss[J]. J Transl Med, 2022, 20(1): 425. |
27 | Li Y, Ling JQ, Jiang QZ. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013. |
28 | Saremi L, Shafizadeh M, Esmaeilzadeh E, et al. Assessment of IL-10, IL-1β and TNF-α gene polymorphisms in patients with peri-implantitis and healthy controls[J]. Mol Biol Rep, 2021, 48(3): 2285-2290. |
29 | Thakur A, Sharma A, Alajangi HK, et al. In pursuit of next-generation therapeutics: antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications[J]. Int J Biol Macromol, 2022, 218: 135-156. |
30 | Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332. |
31 | Lewies A, Wentzel JF, Jacobs G, et al. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases[J]. Molecules, 2015, 20(8): 15392-15433. |
32 | Khurshid Z, Naseem M, Yahya I Asiri F, et al. Significance and diagnostic role of antimicrobial cathelicidins (LL-37) peptides in oral health[J]. Biomolecules, 2017, 7(4): 80. |
33 | Ridyard KE, Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent[J]. Antibiotics (Basel), 2021, 10(6): 650. |
34 | Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides[J]. Trends Pharmacol Sci, 2019, 40(7): 517-528. |
35 | Bin Hafeez A, Jiang XK, Bergen PJ, et al. Antimicrobial peptides: an update on classifications and databases[J]. Int J Mol Sci, 2021, 22(21): 11691. |
36 | Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents[J]. Front Cell Infect Microbiol, 2016, 6: 194. |
37 | Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends Biotechnol, 2011, 29(9): 464-472. |
38 | Monroc S, Badosa E, Feliu L, et al. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria[J]. Peptides, 2006, 27(11): 2567-2574. |
39 | Monroc S, Badosa E, Besalú E, et al. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach[J]. Peptides, 2006, 27(11): 2575-2584. |
40 | Mika JT, Moiset G, Cirac AD, et al. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194[J]. Biochim Biophys Acta, 2011, 1808(9): 2197-2205. |
41 | Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms[J]. Curr Protein Pept Sci, 2009, 10(6): 585-606. |
42 | Ren L, Hen L, Wen H, et al. An anionic antimicro-bial peptide from toad Bombina maxima[J]. Biochem Biophys Res Commun, 2002, 295(4): 796-799. |
43 | Dennison SR, Harris F, Mura M, et al. An atlas of anionic antimicrobial peptides from amphibians[J]. Curr Protein Pept Sci, 2018, 19(8): 823-838. |
44 | Baxter AA, Lay FT, Poon IKH, et al. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects[J]. Cell Mol Life Sci, 2017, 74(20): 3809-3825. |
45 | Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resist Updat, 2016, 26: 43-57. |
46 | Yan YH, Li YZ, Zhang ZW, et al. Advances of peptides for antibacterial applications[J]. Colloids Surf B Biointerfaces, 2021, 202: 111682. |
47 | Zhang L, Rozek A, Hancock RE. Interaction of ca-tionic antimicrobial peptides with model membranes[J]. J Biol Chem, 2001, 276(38): 35714-35722. |
48 | Yang L, Harroun TA, Weiss TM, et al. Barrel-stave model or toroidal model? A case study on melittin pores[J]. Biophys J, 2001, 81(3): 1475-1485. |
49 | Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain[J]. Biophys J, 2003, 84(5): 3052-3060. |
50 | Domingues TM, Riske KA, Miranda A. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles[J]. Langmuir, 2010, 26(13): 11077-11084. |
51 | Patrzykat A, Friedrich CL, Zhang LJ, et al. Suble-thal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli [J]. Antimicrob Agents Chemother, 2002, 46(3): 605-614. |
52 | Li LR, Shi YH, Cheserek MJ, et al. Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes [J]. Appl Microbiol Biotechnol, 2013, 97(4): 1711-1723. |
53 | 唐馨, 毛新芳, 马彬云, 等. 抗菌肽的研究现状和挑战[J]. 中国生物工程杂志, 2019, 39(8): 86-94. |
Tang X, Mao XF, Ma BY, et al. Antimicrobial peptides: current status and future challenges[J]. China Biotechnol, 2019, 39(8): 86-94. | |
54 | 方雨晴, 朱禹赫, 王蔚. 种植体表面纳米改性方法及其生物学效应研究进展[J]. 中国实用口腔科杂志, 2023, 16(1): 110-116. |
Fang YQ, Zhu YH, Wang W. Research progress in surface nanocrystallization methods of implants and their biological effects[J]. Chin J Pract Stomatol, 2023, 16(1): 110-116. | |
55 | Miao Q, Sun JL, Huang F, et al. Antibacterial peptide HHC-36 sustained-release coating promotes antibacterial property of percutaneous implant[J]. Front Bioeng Biotechnol, 2021, 9: 735889. |
56 | Li K, Zhang L, Li JH, et al. pH-responsive ECM coating on Ti implants for antibiosis in reinfected models[J]. ACS Appl Bio Mater, 2022, 5(1): 344-354. |
57 | Chen JJ, Hu GS, Li TJ, et al. Fusion peptide engineered “statically-versatile” titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration[J]. Biomaterials, 2021, 264: 120446. |
58 | Chen JJ, Zhu YC, Xiong MH, et al. Antimicrobial titanium surface via click-immobilization of peptide and its in vitro/vivo activity[J]. ACS Biomater Sci Eng, 2019, 5(2): 1034-1044. |
59 | Wang BB, Bian AQ, Jia FH, et al. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration[J]. Biomater Adv, 2022, 133: 112650. |
60 | Trzcińska Z, Bruggeman M, Ijakipour H, et al. Polydopamine linking substrate for AMPs: characterisation and stability on Ti6Al4V[J]. Materials (Basel), 2020, 13(17): 3714. |
61 | Wei JT, Cao XP, Qian J, et al. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate[J]. Medicine, 2021, 100(44): e27426. |
62 | 孙丰权, 李慕勤, 彭书浩, 等. 钛种植体载抗菌肽涂层的抗菌性及其对成骨细胞活性的影响[J]. 中华口腔医学杂志, 2018, 53(6): 419-424. |
Sun FQ, Li MQ, Peng SH, et al. Study on antibacterial properties and osteoblast activity of antimicro-bial peptide coatings on titanium implants[J]. Chin J Stomatol, 2018, 53(6): 419-424. | |
63 | He YZ, Li YY, Zuo EJ, et al. A novel antibacterial titanium modification with a sustained release of pac-525[J]. Nanomaterials (Basel), 2021, 11(12): 3306. |
64 | Chen XX, Zhou L, Wu D, et al. The effects of tita-nium surfaces modified with an antimicrobial peptide GL13K by silanization on polarization, anti-inflammatory, and proinflammatory properties of macrophages[J]. Biomed Res Int, 2020, 2020: 2327034. |
65 | Zhou L, Han Y, Ding JM, et al. Regulation of an antimicrobial peptide GL13K-modified titanium surface on osteogenesis, osteoclastogenesis, and angiogenesis base on osteoimmunology[J]. ACS Biomater Sci Eng, 2021, 7(9): 4569-4580. |
66 | Li YS, Chen RY, Wang FS, et al. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA)[J]. RSC Adv, 2022, 12(11): 6918-6929. |
67 | Fischer NG, Chen X, Astleford-Hopper K, et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices[J]. Mater Sci Eng C Mater Biol Appl, 2021, 125: 112108. |
68 | Fischer NG, Moussa DG, Skoe EP, et al. Keratinocyte-specific peptide-based surfaces for hemidesmosome upregulation and prevention of bacterial colonization[J]. ACS Biomater Sci Eng, 2020, 6(9): 4929-4939. |
69 | Fischer NG, He JH, Aparicio C. Surface immobilization chemistry of a laminin-derived peptide affects keratinocyte activity[J]. Coatings (Basel), 2020, 10(6): 560. |
70 | Boda SK, Aparicio C. Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sea-ling around transmucosal oral implants[J]. Biomater Sci, 2022, 10(3): 665-677. |
71 | Liu J, Yang WH, Tao BL, et al. Preparing and immobilizing antimicrobial osteogenic growth peptide on titanium substrate surface[J]. J Biomed Mater Res A, 2018, 106(12): 3021-3033. |
72 | Rodríguez López AL, Lee MR, Ortiz BJ, et al. Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β‑peptides from polyelectrolyte multilayers[J]. Acta Biomater, 2019, 93: 50-62. |
73 | Pihl M, Galli S, Jimbo R, et al. Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous titania implant[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(11): 1787-1795. |
74 | Wang Y, Zhang JW, Gao T, et al. Covalent immobilization of DJK-5 peptide on porous titanium for enhanced antibacterial effects and restrained inflammatory osteoclastogenesis[J]. Colloids Surf B Biointerfaces, 2021, 202: 111697. |
75 | Hwang YE, Im S, Kim H, et al. Adhesive antimicrobial peptides containing 3, 4-dihydroxy-L-phenyla-lanine residues for direct one-step surface coating[J]. Int J Mol Sci, 2021, 22(21): 11915. |
76 | Zarghami V, Ghorbani M, Bagheri KP, et al. Impro-ving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline[J]. J Mater Sci Mater Med, 2022, 33(6): 46. |
77 | Cheng Q, Lu R, Wang X, et al. Antibacterial activity and cytocompatibility evaluation of the antimicro-bial peptide Nal-P-113-loaded graphene oxide coating on titanium[J]. Dent Mater J, 2022, 41(6): 905-915. |
78 | Zhou WH, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration[J]. Bioact Mater, 2023, 20: 64-80. |
79 | Grover V, Chopra P, Mehta M, et al. Improvisation and evaluation of laterosporulin coated titanium surfaces for dental applications: an in vitro investigation[J]. Indian J Microbiol, 2021, 61(2): 203-211. |
80 | 张丽娟. 蜂毒肽分离纯化与体内外抗HSV-1病毒作用研究[D]. 福州: 福建农林大学, 2010. |
Zhang LJ. Isolation and purification of melittin and its anti-HSV-1 effect in vitro and in vivo [D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. | |
81 | 王倩, 胡欢, 范芹, 等. 种植体周围炎生物膜的微生物群落多样性研究进展[J]. 微生物学通报, 2019, 46(11): 3084-3090. |
Wang Q, Hu H, Fan Q, et al. Advances in the diversity of peri-implantitis biofilm microbial communities[J]. Microbiol China, 2019, 46(11): 3084-3090. | |
82 | Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections[J]. Colloids Surf B Biointerfa-ces, 2020, 193: 111116. |
83 | 刘育豪, 袁泉, 张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233. |
Liu YH, Yuan Q, Zhang SW. Recent research pro-gress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting[J]. Int J Stomatol, 2019, 46(2): 228-233. | |
84 | Costa B, Martínez-de-Tejada G, Gomes PAC, et al. Antimicrobial peptides in the battle against orthopedic implant-related infections: a review[J]. Pharmaceutics, 2021, 13(11): 1918. |
[1] | 赖思悦,李博磊,程磊. 光热治疗辅助根管冲洗治疗根尖周炎的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 565-571. |
[2] | 张政,杨锋,李家锋,曹焜. 钛种植体抗菌化修饰的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 585-595. |
[3] | 马玉, 左玉, 刘建华. 抗菌光动力疗法与全身抗菌药物辅助治疗牙周炎疗效比较的Meta分析[J]. 国际口腔医学杂志, 2024, 51(4): 406-415. |
[4] | 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424. |
[5] | 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81. |
[6] | 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394. |
[7] | 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406. |
[8] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[9] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[10] | 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482. |
[11] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[12] | 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710. |
[13] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[14] | 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477. |
[15] | 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480. |
|