国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3): 278-287.doi: 10.7518/gjkq.2024041

• 口腔组织再生专栏 • 上一篇    下一篇

口颌肌再生纤维化的特异性机制与药物治疗的研究进展

窦金凤(),程旭,石冰()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院唇腭裂外科 成都 610041
  • 收稿日期:2023-09-25 修回日期:2024-01-23 出版日期:2024-05-01 发布日期:2024-05-06
  • 通讯作者: 石冰
  • 作者简介:窦金凤,硕士,Email:doujinfengkq@163.com
  • 基金资助:
    国家自然科学基金面上项目(81974147)

Research progress on mechanism and drug treatment of orofacial muscle regeneration and fibrosis

Jinfeng Dou(),Xu Cheng,Bing Shi()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-09-25 Revised:2024-01-23 Online:2024-05-01 Published:2024-05-06
  • Contact: Bing Shi
  • Supported by:
    National Natural Science Foundation of China(81974147)

摘要:

唇腭裂等先天性颌面畸形的患者多伴有口颌肌结构和功能的异常,颌面整复术后,口颌肌通常表现出成肌能力不足和过度纤维化的特点,这极大地限制了患者颌面功能的恢复。口颌肌是具有独特进化及发育特征的骨骼肌亚群,其纤维化的发生与其独特的胚胎发育来源和固有的再生特性有关,其中卫星细胞和成纤维脂肪前体细胞主导的成肌-成纤维失衡是纤维化发生的重要因素。药物治疗或可成为改善口颌肌纤维化的有效途径。本文就口颌肌发育和再生的独特性、肌纤维化发生的细胞学基础,以及美国食品药品监督管理局批准的或正在进行临床试验的对抗骨骼肌纤维化的药物治疗展开综述,为阐明口颌肌再生纤维化的特异性机制和制定更有效的促进口颌肌再生的策略提供思路。

关键词: 口颌肌再生纤维化, 先天性颌面畸形, 卫星细胞, 成纤维脂肪前体细胞

Abstract:

Patients with congenital maxillofacial deformities such as cleft lip and palate are often characterized by the abnormal structure and function of the orofacial muscles. After facial plastic surgeries, orofacial muscles usually exhibit the characteristics of impaired myogenesis and excessive fibrosis, which greatly limits the recovery of orofacial function. Orofacial muscles are skeletal muscle subsets with unique evolutionary and developmental characteristics. The occurrence of orofacial muscle fibrosis is related to its unique embryonic development source and inherent regeneration characteristics. Muscle satellite cell and fibroadipogenic progenitors are the two main cell types in the skeletal muscle tissue that are responsible for the myogenic process and fibrogenic process, respectively. Myogenesis-fibrogenesis imbalance is an important factor in orofacial muscle fibrosis. A variety of antifibrosis drugs are expected to improve skeletal muscle fibrosis effectively. This review focuses on the specificity of orofacial muscle development and regeneration, the cytological basis of orofacial muscle fibrosis, and the treatment of orofacial muscle fibrosis to clarify the unique mechanism of orofacial muscle regeneration and to develop the precise treatment for orofacial muscle regeneration.

Key words: orofacial muscle regeneration and fibrosis, congenital maxillofacial deformity, satellite cells, fibroadi-pogenic progenitors

中图分类号: 

  • R782.2

图 1

口颌肌再生纤维化的特异性机制与药物治疗"

1 Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG, et al. Orofacial muscles: embryonic develop-ment and regeneration after injury[J]. J Dent Res, 2020, 99(2): 125-132.
2 Worley ML, Patel KG, Kilpatrick LA. Cleft lip and palate[J]. Clin Perinatol, 2018, 45(4): 661-678.
3 Vyas T, Gupta P, Kumar S, et al. Cleft of lip and pa-late: a review[J]. J Family Med Prim Care, 2020, 9(6): 2621-2625.
4 Pavlath GK, Thaloor D, Rando TA, et al. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities[J]. Dev Dyn, 1998, 212(4): 495-508.
5 Yoshioka K, Kitajima Y, Seko D, et al. The body region specificity in murine models of muscle regene-ration and atrophy[J]. Acta Physiol (Oxf), 2021, 231(1): e13553.
6 Cheng X, Huang YX, Liu YM, et al. Head muscle fibro-adipogenic progenitors account for the tilted regeneration towards fibrosis[J]. Biochem Biophys Res Commun, 2022, 589: 131-138.
7 Lazzeri D, Viacava P, Pollina LE, et al. Dystrophic-like alterations characterize orbicularis oris and palatopharyngeal muscles in patients affected by cleft lip and palate[J]. Cleft Palate Craniofac J, 2008, 45(6): 587-591.
8 Li Y, Shi B, Song QG, et al. Effects of lip repair on maxillary growth and facial soft tissue development in patients with a complete unilateral cleft of lip, alveolus and palate[J]. J Craniomaxillofac Surg, 2006, 34(6): 355-361.
9 Kapp-Simon KA. Psychological issues in cleft lip and palate[J]. Clin Plast Surg, 2004, 31(2): 347-352.
10 von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, et al. Muscle fibrosis in the soft palate: deli-very of cells, growth factors and anti-fibrotics[J]. Adv Drug Deliv Rev, 2019, 146: 60-76.
11 Heude E, Rivals I, Couly G, et al. Masticatory muscle defects in hemifacial microsomia: a new embryo-logical concept[J]. Am J Med Genet A, 2011, 155A(8): 1991-1995.
12 Farber SJ, Maliha SG, Gonchar MN, et al. Effect on facial growth of the management of cleft lip and pa-late[J]. Ann Plast Surg, 2019, 83(6): e72-e76.
13 Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: an essential role for muscle connective tissue[J]. Curr Top Dev Biol, 2019, 132: 137-176.
14 Schubert FR, Singh AJ, Afoyalan O, et al. To roll the eyes and snap a bite-function, development and evolution of craniofacial muscles[J]. Semin Cell Dev Biol, 2019, 91: 31-44.
15 Diogo R, Kelly RG, Christiaen L, et al. A new heart for a new head in vertebrate cardiopharyngeal evolution[J]. Nature, 2015, 520(7548): 466-473.
16 Tzahor E, Evans SM. Pharyngeal mesoderm develop-ment during embryogenesis: implications for both heart and head myogenesis[J]. Cardiovasc Res, 2011, 91(2): 196-202.
17 Harel I, Maezawa Y, Avraham R, et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 18839-18844.
18 Gyöngyösi M, Winkler J, Ramos I, et al. Myocar-dial fibrosis: biomedical research from bench to bedside[J]. Eur J Heart Fail, 2017, 19(2): 177-191.
19 Frangogiannis NG, Mendoza LH, Lindsey ML, et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury[J]. J Immunol, 2000, 165(5): 2798-2808.
20 Grimaldi A, Comai G, Mella S, et al. Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse[J]. Elife, 2022, 11: e70235.
21 Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91(4): 1447-1531.
22 Sciote JJ, Horton MJ, Rowlerson AM, et al. Speciali-zed cranial muscles: how different are they from limb and abdominal muscles[J]. Cells Tissues Organs, 2003, 174(1/2): 73-86.
23 Cheng X, Huang HY, Luo XY, et al. Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat craniofacial muscle[J]. Sci Rep, 2018, 8(1): 10613.
24 Isola G, Anastasi GP, Matarese G, et al. Functional and molecular outcomes of the human masticatory muscles[J]. Oral Dis, 2018, 24(8): 1428-1441.
25 Buvinic S, Balanta-Melo J, Kupczik K, et al. Muscle-bone crosstalk in the masticatory system: from biomechanical to molecular interactions[J]. Front Endocrinol (Lausanne), 2020, 11: 606947.
26 Sharma GR, Kumar V, Kanojia RK, et al. Fast and slow myosin as markers of muscle regeneration in mangled extremities: a pilot study[J]. Eur J Orthop Surg Traumatol, 2019, 29(7): 1539-1547.
27 Mann CJ, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle[J]. Skelet Muscle, 2011, 1(1): 21.
28 Wosczyna MN, Rando TA. A muscle stem cell support group: coordinated cellular responses in muscle regeneration[J]. Dev Cell, 2018, 46(2): 135-143.
29 Mahdy MAA. Skeletal muscle fibrosis: an overview[J]. Cell Tissue Res, 2019, 375(3): 575-588.
30 Molina T, Fabre P, Dumont NA. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regene-ration and diseases[J]. Open Biol, 2021, 11(12): 210-110.
31 Forcina L, Miano C, Scicchitano BM, et al. Signals from the niche: insights into the role of IGF-1 and IL-6 in modulating skeletal muscle fibrosis[J]. Cells, 2019, 8(3): 232.
32 Bensalah M, Muraine L, Boulinguiez A, et al. A nega-tive feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1771-1784.
33 Lemos DR, Paylor B, Chang C, et al. Functionally convergent white adipogenic progenitors of diffe-rent lineages participate in a diffused system supporting tissue regeneration[J]. Stem Cells, 2012, 30(6): 1152-1162.
34 Paylor B, Joe AW, Rossi FM, et al. In vivo characte-rization of neural crest-derived fibro/adipogenic progenitor cells as a likely cellular substrate for craniofacial fibrofatty infiltrating disorders[J]. Biochem Biophys Res Commun, 2014, 451(1): 148-151.
35 Feige P, Brun CE, Ritso M, et al. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease[J]. Cell Stem Cell, 2018, 23(5): 653-664.
36 Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 204-226.
37 Ono Y, Boldrin L, Knopp P, et al. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles[J]. Dev Biol, 2010, 337(1): 29-41.
38 Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration[J]. Semin Cell Dev Biol, 2021, 119: 32-38.
39 Tidball JG, Wehling-Henricks M. Shifts in macrophage cytokine production drive muscle fibrosis[J]. Nat Med, 2015, 21(7): 665-666.
40 Wu JH, Ren BW, Wang DC, et al. Regulatory T cells in skeletal muscle repair and regeneration: recent insights[J]. Cell Death Dis, 2022, 13(8): 680.
41 Chen ZY, Lan HQ, Liao ZH, et al. Regulatory T cells-centered regulatory networks of skeletal muscle inflammation and regeneration[J]. Cell Biosci, 2022, 12(1): 112.
42 Gama JFG, Romualdo RD, de Assis ML, et al. Role of regulatory T cells in skeletal muscle regeneration: a systematic review[J]. Biomolecules, 2022, 12(6): 817.
43 Birbrair A, Zhang T, Wang ZM, et al. Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle[J]. Am J Physiol Cell Physiol, 2013, 305(11): C1098-C1113.
44 Sun XT, Nkennor B, Mastikhina O, et al. Endothe-lium-mediated contributions to fibrosis[J]. Semin Cell Dev Biol, 2020, 101: 78-86.
45 Iavarone F, Guardiola O, Scagliola A, et al. Cripto shapes macrophage plasticity and restricts EndMT in injured and diseased skeletal muscle[J]. EMBO Rep, 2020, 21(4): e49075.
46 Zordan P, Rigamonti E, Freudenberg K, et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration[J]. Cell Death Dis, 2014, 5(1): e1031.
47 Foster W, Li Y, Usas A, et al. Gamma interferon as an antifibrosis agent in skeletal muscle[J]. J Orthop Res, 2003, 21(5): 798-804.
48 Zhang CC, Cheng NX, Qiao BK, et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regene-ration[J]. J Cachexia Sarcopenia Muscle, 2020, 11(5): 1291-1305.
49 Zhuang SZ, Russell A, Guo YF, et al. IFN-γ bloc-kade after genetic inhibition of PD-1 aggravates skeletal muscle damage and impairs skeletal muscle regeneration[J]. Cell Mol Biol Lett, 2023, 28(1): 27.
50 Ulloa L, Doody J, Massagué J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway[J]. Nature, 1999, 397(6721): 710-713.
51 García-Sáenz M, Lobaton-Ginsberg M, Ferreira-Hermosillo A. Metformin in differentiated thyroid cancer: molecular pathways and its clinical implications[J]. Biomolecules, 2022, 12(4): 574.
52 Farup J, Just J, de Paoli F, et al. Human skeletal muscle CD90+ fibro-adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients[J]. Cell Metab, 2021, 33(11): 2201-2214.e11.
53 Hasan MM, Shalaby SM, El-Gendy J, et al. Beneficial effects of metformin on muscle atrophy induced by obesity in rats[J]. J Cell Biochem, 2019, 120(4): 5677-5686.
54 Muraine L, Bensalah M, Butler-Browne G, et al. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease[J]. Curr Opin Pharmacol, 2023, 68: 102332.
55 Morales MG, Vazquez Y, Acuña MJ, et al. Angiotensin Ⅱ-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells[J]. Int J Biochem Cell Biol, 2012, 44(11): 1993-2002.
56 Sun GL, Haginoya K, Dai HM, et al. Intramuscular renin-angiotensin system is activated in human muscular dystrophy[J]. J Neurol Sci, 2009, 280(1/2): 40-48.
57 Wu LM, Vasilijic S, Sun Y, et al. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models[J]. Sci Transl Med, 2021, 13(602): eabd4816.
58 Hwang OK, Park JK, Lee EJ, et al. Therapeutic effect of losartan, an angiotensin Ⅱ type 1 receptor antagonist, on CCl4-induced skeletal muscle injury[J]. Int J Mol Sci, 2016, 17(2): 227.
59 Elbaz M, Yanay N, Aga-Mizrachi S, et al. Losartan, a therapeutic candidate in congenital muscular dystrophy: studies in the dy(2J)/dy(2J) mouse[J]. Ann Neurol, 2012, 71(5): 699-708.
60 Cabello-Verrugio C, Morales MG, Cabrera D, et al. Angiotensin Ⅱ receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles[J]. J Cell Mol Med, 2012, 16(4): 752-764.
61 Spurney CF, Sali A, Guerron AD, et al. Losartan decreases cardiac muscle fibrosis and improves car-diac function in dystrophin-deficient mdx mice[J]. J Cardiovasc Pharmacol Ther, 2011, 16(1): 87-95.
62 Morales MG, Cabrera D, Céspedes C, et al. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a dimi-nution in the expression and activity of connective tissue growth factor (CTGF/CCN-2)[J]. Cell Tissue Res, 2013, 353(1): 173-187.
63 Dittrich S, Graf E, Trollmann R, et al. Effect and safety of treatment with ACE-inhibitor Enalapril and β‑blocker metoprolol on the onset of left ventricular dysfunction in Duchenne muscular dystrophy-a randomized, double-blind, placebo-controlled trial[J]. Orphanet J Rare Dis, 2019, 14(1): 105.
64 Roskoski R Jr. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders[J]. Pharmacol Res, 2018, 129: 65-83.
65 Sacha T, Saglio G. Nilotinib in the treatment of chronic myeloid leukemia[J]. Future Oncol, 2019, 15(9): 953-965.
66 Pagan FL, Wilmarth B, Torres-Yaghi Y, et al. Long-term safety and clinical effects of nilotinib in Parkinson’s disease[J]. Mov Disord, 2021, 36(3): 740-749.
67 Wind S, Schmid U, Freiwald M, et al. Clinical pharmacokinetics and pharmacodynamics of nintedanib[J]. Clin Pharmacokinet, 2019, 58(9): 1131-1147.
68 Lamb YN. Nintedanib: a review in fibrotic interstitial lung diseases[J]. Drugs, 2021, 81(5): 575-586.
69 Huang P, Zhao XS, Fields M, et al. Imatinib attenua-tes skeletal muscle dystrophy in mdx mice[J]. FASEB J, 2009, 23(8): 2539-2548.
70 Ahluwalia N, Shea BS, Tager AM. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses[J]. Am J Respir Crit Care Med, 2014, 190(8): 867-878.
71 Ito T, Ogawa R, Uezumi A, et al. Imatinib attenua-tes severe mouse dystrophy and inhibits proliferation and fibrosis-marker expression in muscle mesen-chymal progenitors[J]. Neuromuscul Disord, 2013, 23(4): 349-356.
72 Piñol-Jurado P, Suárez-Calvet X, Fernández-Simón E, et al. Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy[J]. Cell Death Dis, 2018, 9(7): 776.
73 Corona BT, Rivera JC, Dalske KA, et al. Pharmacological mitigation of fibrosis in a porcine model of volumetric muscle loss injury[J]. Tissue Eng Part A, 2020, 26(11/12): 636-646.
74 Lemos DR, Babaeijandaghi F, Low M, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors[J]. Nat Med, 2015, 21(7): 786-794.
75 Liu N, Zhuang SG. Tissue protective and anti-fibrotic actions of suramin: new uses of an old drug[J]. Curr Clin Pharmacol, 2011, 6(2): 137-142.
76 Chan YS, Li Y, Foster W, et al. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury[J]. Am J Sports Med, 2005, 33(1): 43-51.
77 Chan YS, Li Y, Foster W, et al. Antifibrotic effects of suramin in injured skeletal muscle after laceration[J]. J Appl Physiol (1985), 2003, 95(2): 771-780.
78 Taniguti AP, Pertille A, Matsumura CY, et al. Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF‑β1 blocker[J]. Muscle Nerve, 2011, 43(1): 82-87.
79 Nozaki M, Li Y, Zhu JH, et al. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth[J]. Am J Sports Med, 2008, 36(12): 2354-2362.
80 Licandro SA, Crippa L, Pomarico R, et al. The pan HDAC inhibitor Givinostat improves muscle function and histological parameters in two Duchenne muscular dystrophy murine models expressing different haplotypes of the LTBP4 gene[J]. Skelet Muscle, 2021, 11(1): 19.
81 Consalvi S, Mozzetta C, Bettica P, et al. Preclinical studies in the mdx mouse model of Duchenne muscular dystrophy with the histone deacetylase inhibitor givinostat[J]. Mol Med, 2013, 19(1): 79-87.
82 Bettica P, Petrini S, D’Oria V, et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2016, 26(10): 643-649.
83 Fiorentini F, Germani M, del Bene F, et al. Population pharmacokinetic-pharmacodynamic analysis of givinostat[J]. Expert Opin Drug Metab Toxicol, 2023, 19(4): 229-238.
[1] 程旭,黄艺璇,李精韬,石冰. 牙颌面肌肉发育和再生特征的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .