国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (2): 205-215.doi: 10.7518/gjkq.2026003
• 论著 • 上一篇
姚曼曼(
),路月亭(
),吴景景,刘铁军,仇永乐,尚宏悦,董博
Manman Yao(
),Yueting Lu(
),Jingjing Wu,Tiejun Liu,Yongle Qiu,Hongyue Shang,Bo Dong
摘要:
目的 采用孟德尔随机化(MR)法研究特定线粒体功能与口腔扁平苔藓(OLP)存在之间的因果关系,探讨线粒体功能障碍对OLP的影响,为深入了解OLP的发病机制和寻找潜在的治疗靶点提供参考。 方法 本研究的数据来源于开放全基因组关联研究(IEU)和芬兰基因组研究计划(FINNGEN)数据库。从IEU数据库中筛选出69种与线粒体功能相关的遗传变异位点,从FINNGEN数据库中获得了包含587例病例和411 594例对照的OLP数据。采用R语言4.3.2进行MR分析,采用逆方差加权 (IVW)、MR Egger 回归法(MR Egger)和加权中位数法,评估线粒体变异与OLP之间的因果关系。工具变量的选择设置了P<5e-5的统计学阈值,消除连锁不平衡的标准包括设置r²>0.001和去除1 000 kb范围内的单核苷酸多态性(SNP);同时还进行了异质性检验和定向水平多效性检验。 结果 MR分析发现特定线粒体功能与OLP之间的关联存在统计学意义。比值比(OR)小于1时,提示对OLP具有保护作用。谷氧还蛋白-2(Grx2)(IVW,OR=0.768,P=0.036)和线粒体肽蛋氨酸亚砜还原酶(MPMSR)(IVW,OR=0.680,P=0.044)均小于1;相反,丙二酰辅酶A脱羧酶(MCD)(IVW,OR=1.591,P=0.022)、39S核糖体蛋白L34(MRPL34)(IVW,OR=1.826,P=0.034)和核糖体再循环因子(RRF)(IVW,OR=1.498,P=0.004 9)的OR值大于1,提示这些因素是OLP的危险因素。进一步的反向验证强调了MCD与OLP的相关性具有统计学意义(IVW,OR=1.134,P=0.045),表明OLP也是这种线粒体功能的危险因素。 结论 本研究基于MR发现特定线粒体功能与OLP之间的因果关联存在统计学意义,其中Grx2和MPMSR等与氧化还原稳态相关的线粒体蛋白显示出对OLP的保护作用,而MCD、MRPL34和RRF等则可能增加OLP的患病风险。此外,反向MR结果支持MCD功能变化与OLP存在因果关系,提示二者存在潜在的双向调控关系。这些结果提示线粒体氧化代谢与蛋白质合成等功能异常可能在OLP发病中发挥关键作用。
中图分类号:
| [1] | Deng X, Wang Y, Jiang L, et al. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment[J]. Front Immunol, 2023, 13: 1023213. |
| [2] | Lin DJ, Yang LS, Wen LL, et al. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis[J]. Mucosal Immunol, 2021, 14(6): 1247-1258. |
| [3] | Louisy A, Humbert E, Samimi M. Oral lichen planus: an update on diagnosis and management[J]. Am J Clin Dermatol, 2024, 25(1): 35-53. |
| [4] | Dave A, Shariff J, Philipone E. Association between oral lichen planus and systemic conditions and medi-cations: case-control study[J]. Oral Dis, 2021, 27(3): 515-524. |
| [5] | Wang J, Yang JJ, Wang C, et al. Systematic review and meta-analysis of oxidative stress and antioxidant markers in oral lichen planus[J]. Oxid Med Cell Longev, 2021, 2021: 9914652. |
| [6] | Chiu YW, Su YF, Yang CC, et al. Is OLP potentially malignant? A clue from ZNF582 methylation[J]. Oral Dis, 2023, 29(3): 1282-1290. |
| [7] | Bindakhil M, Akintoye S, Corby P, et al. Influence of topical corticosteroids on malignant transformation of oral lichen planus[J]. J Oral Pathol Med, 2022, 51(2): 188-193. |
| [8] | Alrashdan MS, Cirillo N, McCullough M. Oral lichen planus: a literature review and update[J]. Arch Dermatol Res, 2016, 308(8): 539-551. |
| [9] | Shalaby R, El Nawawy M, Selim K, et al. The role of vitamin D in amelioration of oral lichen planus and its effect on salivary and tissue IFN-γ level: a randomized clinical trial[J]. BMC Oral Health, 2024, 24(1): 813. |
| [10] | Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead[J]. Nat Rev Mol Cell Biol, 2024, 25(1): 65-82. |
| [11] | Banerjee S, Mukherjee S, Mitra S, et al. Comparative evaluation of mitochondrial antioxidants in oral potentially malignant disorders[J]. Kurume Med J, 2020, 66(1): 15-27. |
| [12] | Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases[J]. Front Immunol, 2023, 14: 1160035. |
| [13] | Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus[J]. J Diabetes Metab Di-sord, 2020, 19(2): 2017-2022. |
| [14] | Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73-79. |
| [15] | Chai YC, Mieyal JJ. Glutathione and glutaredoxin-key players in cellular redox homeostasis and signa-ling[J]. Antioxidants (Basel), 2023, 12(8): 1553. |
| [16] | Scalcon V, Folda A, Lupo MG, et al. Mitochondrial depletion of glutaredoxin 2 induces metabolic dysfunction-associated fatty liver disease in mice[J]. Redox Biol, 2022, 51: 102277. |
| [17] | Li CL, Xin H, Shi YP, et al. Glutaredoxin 2 protects cardiomyocytes from hypoxia/reoxygenation-induced injury by suppressing apoptosis, oxidative stress, and inflammation via enhancing Nrf2 signa-ling[J]. Int Immunopharmacol, 2021, 94: 107428. |
| [18] | Liu YN, Gong JL, Wang Q, et al. Activation of the Nrf2/HO-1 axis by glutaredoxin 2 overexpression antagonizes vascular endothelial cell oxidative injury and inflammation under LPS exposure[J]. Cytotechnology, 2024, 76(2): 167-178. |
| [19] | Xiang XJ, Song L, Deng XJ, et al. Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer’s disease-like pathology[J]. Exp Neurol, 2019, 318: 145-156. |
| [20] | Hansel A, Kuschel L, Hehl S, et al. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins[J]. FASEB J, 2002, 16(8): 911-913. |
| [21] | Inokuchi Y, Quaglia F, Hirashima A, et al. Role of ribosome recycling factor in natural termination and translational coupling as a ribosome releasing factor[J]. PLoS One, 2023, 18(2): e0282091. |
| [22] | Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: an initiator tRNA-centric view[J]. Mol Microbiol, 2024, 122(5): 772-788. |
| [23] | Kasapkara CS, Ürey BC, Ceylan AC, et al. Malonyl coenzyme A decarboxylase deficiency with a novel mutation[J]. Cardiol Young, 2021, 31(9): 1535-1537. |
| [24] | Zhou LJ, Luo YB, Liu YN, et al. Fatty acid oxidation mediated by malonyl-CoA decarboxylase represses renal cell carcinoma progression[J]. Cancer Res, 2023, 83(23): 3920-3939. |
| [25] | Chapel-Crespo C, Gavrilov D, Sowa M, et al. Clinical, biochemical and molecular characteristics of malonyl-CoA decarboxylase deficiency and long-term follow-up of nine patients[J]. Mol Genet Metab, 2019, 128(1/2): 113-121. |
| [26] | Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism[J]. Adv Biol Regul, 2019, 71: 34-40. |
| [27] | Mallick R, Basak S, Duttaroy AK. Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers[J]. Prog Lipid Res, 2021, 83: 101116. |
| [28] | Vila IK, Chamma H, Steer A, et al. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses[J]. Cell Metab, 2022, 34(1): 125-139.e8. |
| [29] | Xu Z, Han Q, Yang D, et al. Automatic detection of image-based features for immunosuppressive therapy response prediction in oral lichen planus[J]. Front Immunol, 2022, 13: 942945. |
| [30] | Deng J, Pan WY, Ji N, et al. Cell-free DNA promotes inflammation in patients with oral lichen planus via the STING pathway[J]. Front Immunol, 2022, 13: 838109. |
| [31] | Paluch KV, Platz KR, Rudisel EJ, et al. The role of lysine acetylation in the function of mitochondrial ribosomal protein L12[J]. Proteins, 2024, 92(5): 583-592. |
| [32] | Huang G, Li H, Zhang H. Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases[J]. Int J Mol Sci, 2020, 21(22): 8879. |
| [33] | Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322(4): L507-L517. |
| [34] | Zhang JB, Simpson CM, Berner J, et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway[J]. Cell, 2023, 186(11): 2361-2379.e25. |
| [1] | 汪星,李莎,郭锦材. 局部应用环孢素治疗口腔扁平苔藓的有效性和安全性的Meta分析[J]. 国际口腔医学杂志, 2026, 53(1): 51-58. |
| [2] | 张逸之,史雪珂,吴芳龙,周红梅. 复方丹参滴丸治疗口腔扁平苔藓的潜在靶标[J]. 国际口腔医学杂志, 2025, 52(6): 771-782. |
| [3] | 章梦媛,卢洪叶,李千慧,孙平. 细胞自噬及其在口腔种植体骨结合中的作用与机制[J]. 国际口腔医学杂志, 2024, 51(6): 742-748. |
| [4] | 杨再目,曹沛,刘振华,栾庆先. 血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究[J]. 国际口腔医学杂志, 2024, 51(3): 288-295. |
| [5] | 李然,胡月,张宁,高瑞芳,王翔宇,葛学军. Toll样受体和白细胞介素-17单核苷酸多态性与口腔扁平苔藓易感性的相关性研究[J]. 国际口腔医学杂志, 2024, 51(1): 45-51. |
| [6] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
| [7] | 王素杰,谭芹,韦渊,王洁,范杰,岳二丽. 口腔扁平苔藓患者血清血管生成素-2水平与叉头翼状螺旋转录因子阳性调节性T细胞及疾病活动度的相关性分析[J]. 国际口腔医学杂志, 2023, 50(6): 674-678. |
| [8] | 何静,胡明佳,肖宁,李佳,孙婉昕,吕凌,刘帆. 口腔扁平苔藓患者心理痛苦程度及影响因素的调查研究[J]. 国际口腔医学杂志, 2023, 50(3): 308-313. |
| [9] | 张沈懿,王翔剑,石黎冉,石佳鸿,汪玉红,周红梅. 口服β-胡萝卜素治疗非糜烂型口腔扁平苔藓的随机对照试验研究[J]. 国际口腔医学杂志, 2022, 49(6): 633-640. |
| [10] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
| [11] | 丁旭,李鑫,李艳,夏博园,于维先. 氧化应激和线粒体质量控制与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 385-390. |
| [12] | 刘思宇,李新,徐晓雨,孙银银,潘英潇,王赛男,卢恕来. 口腔扁平苔藓与心血管疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 141-146. |
| [13] | 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147-155. |
| [14] | 沈晨露,叶伟佳,吕柯佳,高碧聪,姚华. 口腔扁平苔藓实验模型建立的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 58-62. |
| [15] | 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441. |
|
||