国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 771-782.doi: 10.7518/gjkq.2025063

• 论著 • 上一篇    下一篇

复方丹参滴丸治疗口腔扁平苔藓的潜在靶标

张逸之(),史雪珂,吴芳龙,周红梅()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心口腔医学+前沿医学创新中心 四川大学华西口腔医院 成都 610041
  • 收稿日期:2024-06-16 修回日期:2025-02-18 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 周红梅
  • 作者简介:张逸之,硕士,Email:zhangyizhi1@stu.scu.edu.cn
  • 基金资助:
    国家自然科学基金(82071124);国家自然科学基金(82301095);四川大学华西口腔医院探索与研发项目(RD-03-202410)

Potential targets of compound Danshen dripping pill in the treatment of oral lichen planus based on network pharmacology and molecular docking

Yizhi Zhang(),Xueke Shi,Fanglong Wu,Hongmei Zhou()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-16 Revised:2025-02-18 Online:2025-11-01 Published:2025-10-23
  • Contact: Hongmei Zhou
  • Supported by:
    National Natural Science Foundation of China(82071124);Research and Develop Program, West China Hospital of Stomatology Sichuan University(RD-03-202410)

摘要:

目的 联合网络药理学及分子对接技术预测复方丹参滴丸治疗口腔扁平苔藓(OLP)的潜在靶标。 方法 于中药系统药理学数据库和分析平台获得药物活性成分及其作用靶点,通过DisGeNET等数据库获得OLP相关疾病靶点,得到共同靶点。构建药物-成分-靶点网络和蛋白质互作网络图,筛得关键成分和关键靶点。进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析确定主要功能和通路。将关键活性成分和关键靶点分子对接并将结果可视化。 结果 获得469个药物-疾病共同靶点,药物关键成分为乙酸龙脑酯、丹参新醌D和丹参醇A,关键靶点为蛋白激酶B(AKT1)、腺病毒E1A 结合蛋白p300(EP300)和雌激素受体1(ESR1)等。GO结果提示,共同靶点涉蛋白质丝氨酸/苏氨酸激酶活性、炎症与信号传导等。KEGG富集通路包括,癌症相关通路和糖尿病并发症AGE-RAGE通路等。分子对接结果示,AKT1、哈维鼠肉瘤病毒(HRAS)与3个关键成分结合能均≤-5.0 kcal/mol。 结论 复方丹参滴丸中乙酸龙脑酯等活性成分可作用于AKT1、HRAS等靶点,进而调控癌症、AGE-RAGE等相关通路等来调节免疫功能、减少氧化应激和抑制炎症,促进OLP愈合。

关键词: 口腔扁平苔藓, 复方丹参滴丸, 网络药理学, 作用靶标, 分子对接

Abstract:

Objective This study aimed to forecast the potential targets of compound Danshen dripping pill (CDDP) in treating oral lichen planus OLP (OLP) via network pharmacology and molecular docking. Methods The active compounds and targets of CDDP were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The disease targets of OLP were obtained from multiple databases, such as DisGeNET. A drug-compound-target network was constructed by intersecting the targets to screen the key active components. A protein-protein interaction network was also built by intersecting the targets to select the key ones. Target intersection was also applied for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The molecular docking and visualization of key active components and targets were also performed. Results A total of 469 drug-disease intersecting targets were found. The key active components were bornyl acetate, dan-shexinkum D, and danshenol A, and the key targets were protein kinase B (AKT1), E1A binding protein p300 (EP300), and estrogen receptor 1 (ESR1). GO enrichment analysis indicated that the results of intersection targets included protein serine/threonine kinase activity, inflammatory response, signal transduction. KEGG enrichment analysis revealed various pathways such as cancer and AGE-RAGE signaling pathway in diabetic complications. Molecular docking showed that the results of AKT1, Harvey rat sarcoma virus (HRAS), and the three key active components were all ≤-5.0 kcal/mol. Conclusion In OLP treatment, the active components of CDDP may participate in immune function, reduce oxidative stress, inhibit inflammation by acting on multiple targets such as AKT1 and HRAS, and regulate pathways including cancer and AGE-RAGE signaling pathway.

Key words: oral lichen planus, compound Danshen dripping pill, network pharmacology, drug target, molecular docking

中图分类号: 

  • R78

表 1

CDDP组成药物的部分活性成分"

药物分子编码英文名称中文名称结构图口服生物利用度/%药物相似性
丹参*MOL007064przewalskin b(1R,4R,10R,13R)-13-羟基-5,5-二甲基-15-丙烷-2-基-11-氧酸四环[8.6.0.01,13.04,9]十六烷-8,15-二烯-12,14-二酮110.320.44
MOL007132

(2R)-3-(3,4-dihydroxyphenyl)-2-

[(Z)-3-(3,4-dihydroxyphenyl) acry-

loyl] oxy-propionic acid

(2R)-3-(3,4-二羟基苯基)-2-[(Z)-3-(3,4-二羟基苯基)丙烯酰基]氧代丙酸109.380.35
MOL007140

(Z)-3-[2-[(E)-2-(3,4-dihydroxyph-

nyl) vinyl]-3,4-dihydroxy-phenyl]

acrylic acid

(Z)-3-[2-[(E)-2-(3,4-二羟基苯烯)乙烯基]-3,4-二羟基苯基]丙烯酸88.540.26
MOL007150

(6S)-6-hydroxy-1-methyl-6-meth

lol-8,9-dihydro-7H-naphtho[8,7-g]

benzofuran-10,11-quinone

丹参二醇A75.390.46
MOL007058formyltanshinone醛基丹参酮73.440.42
MOL007120miltionone Ⅱ丹参酚醌Ⅱ71.030.44
MOL007105epidanshenspiroketallactone表丹参螺缩酮内脂68.270.31
MOL007155(6S)-6-(hydroxymethyl)-1,6-dimethyl-8,9-dihydro-7H-naphtho[8,7-g]b-enzofuran-10,11-dione(6S)-6-(羟甲基)-1,6-二甲基-8,9-二氢-7H-萘[8,7-g]苯并呋喃-10,11-二酮65.260.45
MOL007130prolithospermic acid原紫草酸64.370.31
MOL0070502?(4-hydroxy-3-methoxyphenyl)?5-(3-hydroxypropyl)?7-methoxy-3-be-nzofurancarboxaldehyde2-(4-羟基-3-甲氧基苯基)-5-(3-羟丙基)-7-甲氧基-1-苯并呋喃-3-甲醛62.780.40
三七MOL000098quercetin槲皮素46.430.28
MOL000449stigmasterol豆甾醇43.830.76
MOL002879diop邻苯二甲酸二异辛酯43.590.39
MOL001494Mandenol亚麻油酸乙酯42.000.19
MOL000358beta-sitosterolβ-谷甾醇36.910.75
MOL007475ginsenoside f2人参皂苷f236.430.25
MOL005344ginsenoside rh2人参皂苷Rh236.320.56
MOL001792DFV甘草素32.760.18
冰片MOL006862bronyl acetate乙酸龙脑酯59.300.51
MOL006865dipterocarpol龙脑香醇酮41.710.76
MOL006861asiatic acid积雪草酸41.380.71

图 1

OLP相关靶点韦恩图"

图 2

OLP疾病靶点与药物交集靶点韦恩图OLP疾病靶点与CDDP药物作用靶点取交集得到469个靶点。"

图 3

药物-活性成分-靶点网络图"

图 4

基于STRING数据库构建的PPI网络图"

图 5

关键靶点筛选网络图A:初步构建PPI网络后,根据度中心性二倍中位数筛选靶点(黄色);B:根据度中心性、中介中心性、接近中心性中位数再次筛选靶点(绿色);C:根据度中心性二倍中位数选出核心靶点(红色),D:最后得到10个核心靶点,颜色根据度中心性增大由浅至深。"

图 6

GO及KEGG富集分析气泡图A:GO生物过程分析;B:GO细胞组分分析;C:GO分子功能分析;D:KEGG富集分析;左侧纵坐标对应不同GO/KEGG注释,右侧纵坐标-log10(P值)从红色到蓝色表示数值从小到大,横坐标Gene Ratio代表该词条的基因数占所有基因的比例。Count代表富集到此词条的基因数目,数目越多,气泡越大。每个类别仅列出排名前10(按P值由小到大排序)的条目。"

表 2

关键活性成分与关键靶点的分子对接结合能 (kcal/mol)"

关键靶点关键活性成分
乙酸龙脑酯丹参新醌D丹参醇A
AKT1-5.59-8.2-7.58
EP300-4.61-7.750.89
ESR1-4.29-6.870.89
HRAS-6.60-8.57-6.68
PIK3CA-5.28+0.60-6.76
PIK3CB-4.48-6.27-6.31
PIK3CD-4.07-6.97-6.32
PIK3R1-2.43-0.530.89
PTPN11-4.32-7.27-6.48
STAT3-3.40+0.60-5.24

图7

部分关键活性成分与关键靶点的分子对接图A:AKT1-Danshenol A对接2D图;B:HRAS-bronyl acetate对接2D图;C:HRAS-dan-shexinkum D对接2D图;D:AKT1-Danshenol A对接3D图;E:HRAS-bronyl acetate对接3D图;F:HRAS-dan-shexinkum D对接3D图;氢键长度单位为?。"

[1] 中华口腔医学会口腔黏膜病学专业委员会, 中华口腔医学会中西医结合专业委员会. 口腔扁平苔藓诊疗指南(修订版)[J].中华口腔医学杂志, 2022, 57(2): 115-121.
Society of Oral Medicine Chinese Stomatological Association, Society of Traditional Chinese Medicine Combined with Western Medicine Chinese Stomatological Association. Guideline for the diagnosis and treatment of oral lichen planus (revision) [J].Chin J Stomatol, 2022, 57(2): 115-121.
[2] Iocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype[J]. Head Neck, 2020, 42(3): 539-555.
[3] Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, et al. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer[J]. Oral Dis, 2021, 27(8): 1862-1880.
[4] Ioannides D, Vakirlis E, Kemeny L, et al. European S1 guidelines on the management of lichen planus: a cooperation of the European Dermatology Forum with the European Academy of Dermatology and Venereology[J]. J Eur Acad Dermatol Venereol, 2020, 34(7): 1403-1414.
[5] 郭晨琪, 李俊辰, 申倩, 等. 口腔扁平苔藓的中西医治疗进展[J]. 中国中西医结合皮肤性病学杂志, 2022, 21(5): 468-471.
Guo CQ, Li JC, Shen Q, et al. Progress of oral lichen planus treated with traditional Chinese and western medicine[J]. Chin J Dermato Venerol Integ Trad W Med, 2022, 21(5): 468-471.
[6] 李倩. 复方丹参滴丸研究进展及临床应用[J].中华中医药杂志, 2018, 33(7): 2989-2991.
Li Q. Research progress and clinical application of Compound Danshen Dripping Pills[J]. China J Trad Chin Med Pharm, 2018, 33(7): 2989-2991.
[7] 黄华锋, 董震, 徐辉, 等. 复方丹参滴丸对口腔扁平苔藓患者血液流变学的影响[J]. 实用口腔医学杂志, 2002, 18(2): 140-142.
Huang HF, Dong Z, Xu H, et al. A priliminary observation of composite Danshen droplet pills on hemorheology of patients with oral lichen planus[J]. J Pract Stomatol, 2002, 18(2): 140-142.
[8] 邱峰, 惠建华, 华立. 复方丹参滴丸治疗口腔扁平苔藓患者血液流变学观察[J]. 中国血液流变学杂志, 2006, 16(4): 552, 682.
Qiu F, Hui JH, Hua L. Observation on blood rheology of patients with oral lichen planus treated with compound danshen dripping pills[J]. Chin J Hemorh, 2006, 16(4): 552, 682.
[9] 严嵚, 许建辉. 中西药合用治疗口腔黏膜扁平苔藓疗效观察[J]. 实用中医药杂志, 2017, 33(12): 1389-1390.
Yan Q, Xu JH. Observation on the therapeutic effect of combined Chinese and Western medicine in the treatment of oral lichen planus[J]. J Pract Trad Chin Med, 2017, 33(12): 1389-1390.
[10] 罗雪晴, 周文伟. 复方丹参滴丸治疗口腔扁平苔藓临床观察[J]. 实用中医药杂志, 2021, 37(11):1943-1944.
Luo XQ, Zhou WW. Clinical observation on treatment of oral lichen planus with compound Danshen dropping pills[J]. J Pract Trad Chin Med, 2021, 37(11): 1943-1944.
[11] 郑旭瑛, 谢逸瑞, 吴月蓉. 复方丹参滴丸在口腔扁平苔藓患者中的应用效果及对其血液流变学的影响分析[J]. 中国医药科学, 2020, 10(6): 32-34, 107.
Zheng XY, Xie YR, Wu YR. Analysis on application effects of compound salvia pellet in patients with oral lichen planus and its effect on hemorheology[J]. China Med Pharm, 2020, 10(6): 32-34, 107.
[12] 王立臣, 汤文兵, 陈珍, 等. 糖皮质激素联合复方丹参滴丸治疗口腔扁平苔藓效果观察[J]. 现代中西医结合杂志, 2018, 27(36): 4058-4061.
Wang LC, Tang WB, Chen Z, et al. Observation on the effect of glucocorticoid combined with compound Danshen dripping pills in the treatment of oral lichen planus[J]. Modern J Integr Trad Chin West Med, 2018, 27(36): 4058-4061.
[13] 周红梅, 周刚, 周威, 等. 口腔黏膜病药物治疗精解[M]. 北京: 人民卫生出版社, 2010: 121-127.
Zhou HM, Zhou G, Zhou W, et al. Comprehensive pharmacotherapy for oral mucosal diseases[M]. Beijing: People’s Medical Publishing House, 2010: 121-127.
[14] Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023, 309: 116306.
[15] Sahu D, Rathor LS, Dwivedi SD, et al. A review on molecular docking as an interpretative tool for molecular targets in disease management[J]. Assay Drug Dev Technol, 2024, 22(1): 40-50.
[16] Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6:13.
[17] Kim S, Chen J, Cheng T, et al. PubChem 2023 update[J]. Nucleic Acids Res, 2023, 51(D1): D1373-D1380.
[18] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
[19] ConsortiumUniProt. UniProt: the Universal Protein Knowledgebase in 2023[J]. Nucleic Acids Res, 2023, 51(D1): D523-D531.
[20] Sayers EW, Beck J, Bolton EE, et al. Database resources of the National Center for Biotechnology Information[J]. Nucleic Acids Res, 2024, 52(D1): D33-D43.
[21] Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a know-ledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005, 33(): D514-D517.
[22] Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res, 2020, 48(D1): D845-D855.
[23] Davis AP, Wiegers TC, Johnson RJ, et al. Comparative Toxicogenomics Database (CTD): update 2023[J]. Nucleic Acids Res, 2023, 51(D1): D1257-D1262.
[24] Zhou Y, Zhang Y, Zhao D, et al. TTD: Therapeutic Target Database describing target druggability information[J]. Nucleic Acids Res, 2024, 52(D1): D1465-D1477.
[25] Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082.
[26] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33.
[27] Tang D, Chen M, Huang X, et al. SRplot: a free online platform for data visualization and graphing[J]. PLoS One, 2023, 18(11): e0294236.
[28] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
[29] Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
[30] 王后赏, 杨津, 周红梅. 基于网络药理学和分子对接技术预测泼尼松治疗口腔扁平苔藓的潜在靶点和分子机制[J]. 口腔医学研究, 2022, 38(8): 773-778.
Wang HS, Yang J, Zhou HM. Prediction of potential targets and molecular mechanisms of prednisone for oral lichen planus based on network pharmacology and molecular docking[J]. J Oral Sci Res, 2022, 38(8): 773-778.
[31] Keerthika R, Kamboj M, Girdhar A, et al. An exotic pathogenetic mechanism of angiogenesis in oral lichen planus-a systematic review[J]. J Oral Pathol Med, 2023, 52(9): 803-810.
[32] Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: a promi-sing agent in phytomedicine for inflammation and immune modulation[J]. Phytomedicine, 2023, 114: 154781.
[33] El-Howati A, Thornhill MH, Colley HE, et al. Immune mechanisms in oral lichen planus[J]. Oral Dis, 2023, 29(4): 1400-1415.
[34] Li B, Wu YR, Li L, et al. A novel based-network strategy to identify phytochemicals from radix sal-viae miltiorrhizae (Danshen) for treating Alzheimer’s disease[J]. Molecules, 2022, 27(14): 4463.
[35] Li W, Ling Z, Wang J, et al. ASCT2-mediated glutamine uptake promotes Th1 differentiation via ROS-EGR1-PAC1 pathway in oral lichen planus[J]. Biochem Pharmacol, 2023, 216: 115767.
[36] Zhao W, Feng H, Guo S, et al. Danshenol A inhibits TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1) mediated by NOX4 in endothelial cells[J]. Sci Rep, 2017, 7(1): 12953.
[37] De Porras-Carrique T, Ramos-García P, González-Moles MÁ. Hypertension in oral lichen planus: a systematic review and meta-analysis[J]. Oral Dis, 2024, 30(4): 1793-1805.
[38] Xiao X, Song Z, Liu S. Potential implication of serum lipid levels as predictive indicators for monito-ring oral lichen planus[J]. J Dent Sci, 2024, 19(2): 1307-1311.
[39] Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263.
[40] Jangde N, Ray R, Rai V. RAGE and its ligands: from pathogenesis to therapeutics[J]. Crit Rev Biochem Mol Biol, 2020, 55(6): 555-575.
[41] Ma RJ, Tan YQ, Zhou G. Aberrant IGF1-PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus[J]. Immunobiology, 2019, 224(3): 455-461.
[42] Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from me-chanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455.
[1] 李然,胡月,张宁,高瑞芳,王翔宇,葛学军. Toll样受体和白细胞介素-17单核苷酸多态性与口腔扁平苔藓易感性的相关性研究[J]. 国际口腔医学杂志, 2024, 51(1): 45-51.
[2] 王素杰,谭芹,韦渊,王洁,范杰,岳二丽. 口腔扁平苔藓患者血清血管生成素-2水平与叉头翼状螺旋转录因子阳性调节性T细胞及疾病活动度的相关性分析[J]. 国际口腔医学杂志, 2023, 50(6): 674-678.
[3] 何静,胡明佳,肖宁,李佳,孙婉昕,吕凌,刘帆. 口腔扁平苔藓患者心理痛苦程度及影响因素的调查研究[J]. 国际口腔医学杂志, 2023, 50(3): 308-313.
[4] 张沈懿,王翔剑,石黎冉,石佳鸿,汪玉红,周红梅. 口服β-胡萝卜素治疗非糜烂型口腔扁平苔藓的随机对照试验研究[J]. 国际口腔医学杂志, 2022, 49(6): 633-640.
[5] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[6] 刘思宇,李新,徐晓雨,孙银银,潘英潇,王赛男,卢恕来. 口腔扁平苔藓与心血管疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 141-146.
[7] 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147-155.
[8] 沈晨露,叶伟佳,吕柯佳,高碧聪,姚华. 口腔扁平苔藓实验模型建立的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 58-62.
[9] 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441.
[10] 秦帅华,李新明,李文鹿. 有症状型口腔扁平苔藓患者生存质量与应对策略的评价和相关分析[J]. 国际口腔医学杂志, 2019, 46(3): 282-286.
[11] 周毅 孙秀荣 刘学丽 闫世霞. 心理干预对口腔扁平苔藓治疗效果的影响[J]. 国际口腔医学杂志, 2016, 43(1): 22-.
[12] 汪玉红 吴中婷 周红梅. 不同部位口腔扁平苔藓对治疗的不同反应1例[J]. 国际口腔医学杂志, 2015, 42(4): 430-431.
[13] 王夏夏 孙红英. 低氧诱导因子-1α与口腔扁平苔藓[J]. 国际口腔医学杂志, 2015, 42(3): 318-322.
[14] 刘佳佳 吴圆琴 曾昕 周瑜. 微小RNA在口腔扁平苔藓中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 48-53.
[15] 周红梅 刘传霞. 口腔扁平苔藓的分型治疗思路[J]. 国际口腔医学杂志, 2012, 39(5): 561-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!