国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (4): 526-533.doi: 10.7518/gjkq.2025070
Qihang Huang1(),Hang Wang2,Yaozhong Wang2,Dechao Li1,2(
)
摘要:
口腔疾病发病率较高,其治疗常需要新材料的应用。静电纺丝纳米纤维(ENF)凭借其独特的结构特征和优异的生物学功能,在口腔医学领域展现出广泛的应用价值,尤其在颌面部组织修复和牙齿再生等方面发挥着重要作用。对此,本文综述近年来ENF在口腔医学中的研究进展,简要概括其制备过程和特点,从口腔疾病中的临床应用进行分类阐述,并总结其在口腔疾病治疗中所面临的挑战及发展前景,旨在为口腔疾病的基础研究和临床应用提供参考。
中图分类号:
1 | Jain N, Dutt U, Radenkov I, et al. WHO’s global oral health status report 2022: actions, discussion and implementation[J]. Oral Dis, 2024, 30(2): 73-79. |
2 | Cui H, You Y, Cheng GW, et al. Advanced materials and technologies for oral diseases[J]. Sci Technol Adv Mater, 2023, 24(1): 2156257. |
3 | Chen ZG, Wang PW, Wei B, et al. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell[J]. Acta Biomater, 2010, 6(2): 372-382. |
4 | Nie J, Zhang SM, Wu P, et al. Electrospinning with lyophilized platelet-rich fibrin has the potential to enhance the proliferation and osteogenesis of MC3T3-E1 cells[J]. Front Bioeng Biotechnol, 2020, 8: 595579. |
5 | Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Adv Mater, 2004, 16(4): 361-366. |
6 | Wang CY, Wang J, Zeng LD, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies[J]. Molecules, 2019, 24(5): 834. |
7 | Nauman S, Lubineau G, Alharbi HF. Post proces-sing strategies for the enhancement of mechanical properties of ENMs (electrospun nanofibrous membranes): a review[J]. Membranes (Basel), 2021, 11(1): 39. |
8 | Wei LQ, Wang SS, Shan MQ, et al. Conductive fibers for biomedical applications[J]. Bioact Mater, 2023, 22: 343-364. |
9 | Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects[J]. Chem Soc Rev, 2014, 43(13): 4423-4448. |
10 | Santos E, Hernández RM, Pedraz JL, et al. Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D[J]. Trends Biotechnol, 2012, 30(6): 331-341. |
11 | Chen SX, John JV, McCarthy A, et al. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications[J]. Appl Phys Rev, 2020, 7(2): 021406. |
12 | Chen SX, John JV, McCarthy A, et al. New forms of electrospun nanofiber materials for biomedical applications[J]. J Mater Chem B, 2020, 8(17): 3733-3746. |
13 | Xie XR, Li D, Chen YJ, et al. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis[J]. Adv Healthc Mater, 2021, 10(20): e2100918. |
14 | Chen YJ, Shafiq M, Liu MY, et al. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds[J]. Bioact Mater, 2020, 5(4): 963-979. |
15 | Jiang J, Carlson MA, Teusink MJ, et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique[J]. ACS Biomater Sci Eng, 2015, 1(10): 991-1001. |
16 | Xue JJ, Xie JW, Liu WY, et al. Electrospun nanofibers: new concepts, materials, and applications[J]. Acc Chem Res, 2017, 50(8): 1976-1987. |
17 | Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review[J]. J Control Release, 2021, 334: 463-484. |
18 | Guo S, Dipietro LA. Factors affecting wound hea-ling[J]. J Dent Res, 2010, 89(3): 219-229. |
19 | Mirhaj M, Tavakoli M, Varshosaz J, et al. Preparation of a biomimetic bi-layer chitosan wound dres-sing composed of A-PRF/sponge layer and L-arginine/nanofiber[J]. Carbohydr Polym, 2022, 292: 119648. |
20 | Schäfer S, Smeets R, Köpf M, et al. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery[J]. Biomater Adv, 2022, 135: 212740. |
21 | Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796. |
22 | Elshazly N, Khalil A, Saad M, et al. Efficacy of bioactive glass nanofibers tested for oral mucosal regeneration in rabbits with induced diabetes[J]. Materials (Basel), 2020, 13(11): 2603. |
23 | Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies[J]. J Am Acad Orthop Surg, 2013, 21(1): 51-60. |
24 | Yan X, Yao HY, Luo J, et al. Functionalization of electrospun nanofiber for bone tissue engineering[J]. Polymers (Basel), 2022, 14(14): 2940. |
25 | Wang B, Feng CM, Liu YM, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: a review[J]. Jpn Dent Sci Rev, 2022, 58: 233-248. |
26 | Yao YT, Jia XS, Chen SM, et al. Extensive cell see-ding densities adaptable SF/PGA electrospinning scaffolds for bone tissue engineering[J]. Biomater Adv, 2022, 137: 212834. |
27 | Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, et al. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold[J]. Front Bioeng Biotechnol, 2022, 10: 975431. |
28 | Song HL, Zhang YT, Zhang ZH, et al. Hydroxyapatite/NELL-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application[J]. Int J Nanomedicine, 2021, 16: 4321-4332. |
29 | Zhu YW, Zhou JP, Dai BY, et al. A bilayer membrane doped with struvite nanowires for guided bone regeneration[J]. Adv Healthc Mater, 2022, 11(18): e2201679. |
30 | Ren LL, Gong P, Gao XH, et al. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation[J]. J Mater Chem B, 2022, 10(48): 10128-10138. |
31 | Xing DL, Zuo W, Chen JH, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37380-37395. |
32 | He Y, Tian M, Li XL, et al. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive functions for enhanced alveolar bone regeneration[J]. Adv Healthc Mater, 2022, 11(3): e2102236. |
33 | Ho MH, Huang KY, Tu CC, et al. Functionally gra-ded membrane deposited with PDLLA nanofibers encapsulating doxycycline and enamel matrix deri-vatives-loaded chitosan nanospheres for alveolar ridge regeneration[J]. Int J Biol Macromol, 2022, 203: 333-341. |
34 | Chen YF, Zhang CY, Zhang SY, et al. Novel advan-ces in strategies and applications of artificial articular cartilage[J]. Front Bioeng Biotechnol, 2022, 10: 987999. |
35 | Gan ZQ, Zhao YF, Wu YK, et al. Three-dimensio-nal, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration[J]. Acta Biomater, 2022, 147: 221-234. |
36 | de Souza Araújo IJ, Ferreira JA, Daghrery A, et al. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration[J]. Dent Mater, 2022, 38(11): 1749-1762. |
37 | Liu CZ, Hao ZC, Yang T, et al. Anti-acid biomime-tic dentine remineralization using inorganic silica stabilized nanoparticles distributed electronspun nanofibrous mats[J]. Int J Nanomedicine, 2021, 16: 8251-8264. |
38 | Pidhatika B, Widyaya VT, Nalam PC, et al. Surface modifications of high-performance polymer polyetheretherketone (PEEK) to improve its biological performance in dentistry[J]. Polymers (Basel), 2022, 14(24): 5526. |
39 | Amiri P, Talebi Z, Semnani D, et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers[J]. J Mater Sci Mater Med, 2021, 32(7): 82. |
40 | Peres BU, Manso AP, Carvalho LD, et al. Experimental composites of polyacrilonitrile-electrospun nanofibers containing nanocrystal cellulose[J]. Dent Mater, 2019, 35(11): e286-e297. |
41 | Ribeiro JS, Münchow EA, Bordini EAF, et al. Engineering of injectable antibiotic-laden fibrous mi-croparticles gelatin methacryloyl hydrogel for en-dodontic infection ablation[J]. Int J Mol Sci, 2022, 23(2): 971. |
42 | Terranova L, Louvrier A, Hébraud A, et al. Highly structured 3D electrospun conical scaffold: a tool for dental pulp regeneration[J]. ACS Biomater Sci Eng, 2021, 7(12): 5775-5787. |
43 | Leite ML, de Oliveira Ribeiro RA, Soares DG, et al. Poly(caprolactone)‑aligned nanofibers associated with fibronectin-loaded collagen hydrogel as a potent bioactive scaffold for cell-free regenerative en-dodontics[J]. Int Endod J, 2022, 55(12): 1359-1371. |
44 | Leite ML, Soares DG, Anovazzi G, et al. Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(9): 1244-1258. |
45 | Liu ZQ, Shang LL, Ge SH. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling[J]. J Dent Sci, 2021, 16(3): 937-947. |
46 | Zhao P, Chen W, Feng ZB, et al. Electrospun nanofibers for periodontal treatment: a recent progress[J]. Int J Nanomedicine, 2022, 17: 4137-4162. |
47 | Xu XW, Zhou Y, Zheng K, et al. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(41): 46145-46160. |
48 | Abdalla HB, Marchioro RR, Galvão KEA, et al. Polycaprolactone scaffolds as a biomaterial for cementoblast delivery: an in vitro study[J]. J Periodontal Res, 2022, 57(5): 1014-1023. |
49 | Zarubova J, Hasani-Sadrabadi MM, Dashtimogha-dam E, et al. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration[J]. Adv Healthc Mater, 2022, 11(12): e2102593. |
50 | Ferreira JA, Kantorski KZ, Dubey N, et al. Persona-lized and defect-specific antibiotic-laden scaffolds for periodontal infection ablation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49642-49657. |
51 | He Z, Liu SB, Li ZM, et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models[J]. Mater Today Bio, 2022, 16: 100438. |
52 | Shahi RG, Albuquerque MP, Münchow EA, et al. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating[J]. Odontology, 2017, 105(3): 354-363. |
53 | Mathur A, Kharbanda OP, Koul V, et al. Fabrication and evaluation of antimicrobial biomimetic nanofiber coating for improved dental implant bioseal: an in vitro study[J]. J Periodontol, 2022, 93(10): 1578-1588. |
54 | Cochis A, Ferraris S, Sorrentino R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing[J]. J Mater Chem B, 2017, 5(42): 8366-8377. |
55 | Chowdhury MA, Hossain N, Shahid MA, et al. Development of SiC-TiO2-Graphene neem extracted antimicrobial nano membrane for enhancement of multiphysical properties and future prospect in dental implant applications[J]. Heliyon, 2022, 8(9): e10603. |
56 | Chen ZJ, Lv JC, Wang ZG, et al. Polycaprolactone electrospun nanofiber membrane with sustained chlorohexidine release capability against oral pathogens[J]. J Funct Biomater, 2022, 13(4): 280. |
57 | Andrei V, Fiț NI, Matei I, et al. In vitro antimicrobial effect of novel electrospun polylactic acid/hydroxyapatite nanofibres loaded with doxycycline[J]. Materials (Basel), 2022, 15(18): 6225. |
58 | Zhou YQ, Wang ML, Yan C, et al. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers[J]. Biomolecules, 2022, 12(9): 1254. |
59 | Edmans JG, Ollington B, Colley HE, et al. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease[J]. J Control Release, 2022, 350: 146-157. |
60 | Teno J, Pardo-Figuerez M, Figueroa-Lopez KJ, et al. Development of multilayer ciprofloxacin hydrochloride electrospun patches for buccal drug deli-very[J]. J Funct Biomater, 2022, 13(4): 170. |
61 | Li C, Wang DD, Zhou Y, et al. Antifungal activity of camelus-derived LFA-LFC chimeric peptide gelatin film and effect on oral bacterial biofilm[J]. Appl Biochem Biotechnol, 2023, 195(5): 2993-3010. |
62 | Clitherow KH, Binaljadm TM, Hansen J, et al. Medium-chain fatty acids released from polymeric electrospun patches inhibit Candida albicans growth and reduce the biofilm viability[J]. ACS Biomater Sci Eng, 2020, 6(7): 4087-4095. |
63 | Nam S, Lee SY, Cho HJ. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma[J]. J Colloid Interface Sci, 2017, 508: 112-120. |
64 | Longo R, Raimondo M, Vertuccio L, et al. Bottom-up strategy to forecast the drug location and release kinetics in antitumoral electrospun drug delivery systems[J]. Int J Mol Sci, 2023, 24(2): 1507. |
65 | Nam S, Lee JJ, Lee SY, et al. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy[J]. Int J Pharm, 2017, 526(1/2): 225-234. |
66 |
Ravichandran S, Radhakrishnan J. Anticancer efficacy of lupeol incorporated electrospun Polycaprolactone/gelatin nanocomposite nanofibrous mats[J]. Nanotechnology, 2022, 33(29). doi: 10.1088/1361-6528/ac667b .
doi: 10.1088/1361-6528/ac667b |
67 | Ravichandran S, Jegathaprathaban R, Radhakrishnan J, et al. An investigation of electrospun Clerodendrum phlomidis leaves extract infused polycaprolactone nanofiber for in vitro biological application[J]. Bioinorg Chem Appl, 2022, 2022: 2335443. |
68 | Liu YN, Xu YJ, Zhang XP, et al. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration[J]. J Funct Biomater, 2022, 13(4): 167. |
[1] | 赵南洋,吴娟娟,周洲,陈欣月,张旭彤,徐逸飞,戴泰鸣. 贵州省实施儿童口腔疾病综合干预项目地区与非干预地区12岁儿童口腔健康状况调查分析[J]. 国际口腔医学杂志, 2025, 52(4): 484-489. |
[2] | 张睿,郝婷,吕闻,任双双,刘玉,吴文蕾,孙卫斌. 载黄连素的同轴静电纺丝膜对牙周致病菌及生物膜的抑菌性研究[J]. 国际口腔医学杂志, 2024, 51(5): 596-607. |
[3] | 毛鸿晨,王铮,杨德琴. 牙龈卟啉单胞菌外膜囊泡在口腔疾病中的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 608-615. |
[4] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[5] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[6] | 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328. |
[7] | 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352. |
[8] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[9] | 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18. |
[10] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[11] | 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295. |
[12] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[13] | 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569. |
[14] | 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197. |
[15] | 陈静,葛子瑜,俞婷婷,章燕珍. 帕金森病与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 218-224. |
|