国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (4): 526-533.doi: 10.7518/gjkq.2025070

• 综述 • 上一篇    下一篇

静电纺丝纳米纤维在颌面部组织修复中的应用

黄启航1(),王航2,王耀钟2,李德超1,2()   

  1. 1.山东第二医科大学口腔医学院 潍坊 261053
    2.青岛大学附属青岛市口腔医院口腔颌面外科 青岛 266001
  • 收稿日期:2024-10-21 修回日期:2025-04-02 出版日期:2025-07-01 发布日期:2025-06-20
  • 通讯作者: 李德超
  • 作者简介:黄启航,医师,硕士,Email:huangqihang1999@163.com
  • 基金资助:
    青岛市口腔疾病临床医学研究中心(22-3-7-lczx-7-nsh);山东省医药卫生口腔内科学重点学科项目(2024-2026);青岛市医疗卫生重点学科建设项目(2022-2024);山东省自然科学基金(ZR2024-QH484);青岛市自然科学基金(22-4-4-zrjj-120-jch)

Application of electrospun nanofibers in maxillofacial tissue repair

Qihang Huang1(),Hang Wang2,Yaozhong Wang2,Dechao Li1,2()   

  1. 1.School of Stomatology, Shandong Second Medical University, Weifang 261053, China
    2.Dept. of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
  • Received:2024-10-21 Revised:2025-04-02 Online:2025-07-01 Published:2025-06-20
  • Contact: Dechao Li
  • Supported by:
    Qingdao Clinical Research Center for Oral Diseases(22-3-7-lczx-7-nsh);Shandong Provincial Key Medical and Health Discipline of Oral Medicine (2024-2026);Qingdao Key Health Discipline Development Fund (2022-2024);Shandong Provincial Natural Science Foundation(ZR2024QH484);Qingdao Natural Science Foundation(22-4-4-zrjj-120-jch)

摘要:

口腔疾病发病率较高,其治疗常需要新材料的应用。静电纺丝纳米纤维(ENF)凭借其独特的结构特征和优异的生物学功能,在口腔医学领域展现出广泛的应用价值,尤其在颌面部组织修复和牙齿再生等方面发挥着重要作用。对此,本文综述近年来ENF在口腔医学中的研究进展,简要概括其制备过程和特点,从口腔疾病中的临床应用进行分类阐述,并总结其在口腔疾病治疗中所面临的挑战及发展前景,旨在为口腔疾病的基础研究和临床应用提供参考。

关键词: 静电纺丝, 纳米纤维, 口腔疾病, 组织工程, 药物输送

Abstract:

The incidence of oral diseases is high, and its treatment often requires the application of new materials. Cha-racterized by their unique structural properties and exceptional biological functions, electrospinning nanofibers (ENFs) have shown significant application potential in oral medicine, particularly in maxillofacial tissue repair and tooth regeneration. This work reviews the research progress of ENFs in stomatology, summarizing their preparation process and characteristics, categorizing and elaborates their clinical applications in oral diseases, and outlining their challenges and development prospects in the treatment of oral diseases. The findings provide reference for basic research and clinical application of ENFs against oral diseases.

Key words: electrospinning, nanofiber, oral disease, tissue engineering, drug delivery

中图分类号: 

  • R62

图 1

主要静电纺丝装置及结构a:高压电源;b:喷丝头;c:注射器;d:泰勒锥;e:收集器;f:纤维形态。"

1 Jain N, Dutt U, Radenkov I, et al. WHO’s global oral health status report 2022: actions, discussion and implementation[J]. Oral Dis, 2024, 30(2): 73-79.
2 Cui H, You Y, Cheng GW, et al. Advanced materials and technologies for oral diseases[J]. Sci Technol Adv Mater, 2023, 24(1): 2156257.
3 Chen ZG, Wang PW, Wei B, et al. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell[J]. Acta Biomater, 2010, 6(2): 372-382.
4 Nie J, Zhang SM, Wu P, et al. Electrospinning with lyophilized platelet-rich fibrin has the potential to enhance the proliferation and osteogenesis of MC3T3-E1 cells[J]. Front Bioeng Biotechnol, 2020, 8: 595579.
5 Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films[J]. Adv Mater, 2004, 16(4): 361-366.
6 Wang CY, Wang J, Zeng LD, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies[J]. Molecules, 2019, 24(5): 834.
7 Nauman S, Lubineau G, Alharbi HF. Post proces-sing strategies for the enhancement of mechanical properties of ENMs (electrospun nanofibrous membranes): a review[J]. Membranes (Basel), 2021, 11(1): 39.
8 Wei LQ, Wang SS, Shan MQ, et al. Conductive fibers for biomedical applications[J]. Bioact Mater, 2023, 22: 343-364.
9 Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects[J]. Chem Soc Rev, 2014, 43(13): 4423-4448.
10 Santos E, Hernández RM, Pedraz JL, et al. Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D[J]. Trends Biotechnol, 2012, 30(6): 331-341.
11 Chen SX, John JV, McCarthy A, et al. Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications[J]. Appl Phys Rev, 2020, 7(2): 021406.
12 Chen SX, John JV, McCarthy A, et al. New forms of electrospun nanofiber materials for biomedical applications[J]. J Mater Chem B, 2020, 8(17): 3733-3746.
13 Xie XR, Li D, Chen YJ, et al. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis[J]. Adv Healthc Mater, 2021, 10(20): e2100918.
14 Chen YJ, Shafiq M, Liu MY, et al. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds[J]. Bioact Mater, 2020, 5(4): 963-979.
15 Jiang J, Carlson MA, Teusink MJ, et al. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique[J]. ACS Biomater Sci Eng, 2015, 1(10): 991-1001.
16 Xue JJ, Xie JW, Liu WY, et al. Electrospun nanofibers: new concepts, materials, and applications[J]. Acc Chem Res, 2017, 50(8): 1976-1987.
17 Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review[J]. J Control Release, 2021, 334: 463-484.
18 Guo S, Dipietro LA. Factors affecting wound hea-ling[J]. J Dent Res, 2010, 89(3): 219-229.
19 Mirhaj M, Tavakoli M, Varshosaz J, et al. Preparation of a biomimetic bi-layer chitosan wound dres-sing composed of A-PRF/sponge layer and L-arginine/nanofiber[J]. Carbohydr Polym, 2022, 292: 119648.
20 Schäfer S, Smeets R, Köpf M, et al. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery[J]. Biomater Adv, 2022, 135: 212740.
21 Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796.
22 Elshazly N, Khalil A, Saad M, et al. Efficacy of bioactive glass nanofibers tested for oral mucosal regeneration in rabbits with induced diabetes[J]. Materials (Basel), 2020, 13(11): 2603.
23 Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies[J]. J Am Acad Orthop Surg, 2013, 21(1): 51-60.
24 Yan X, Yao HY, Luo J, et al. Functionalization of electrospun nanofiber for bone tissue engineering[J]. Polymers (Basel), 2022, 14(14): 2940.
25 Wang B, Feng CM, Liu YM, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: a review[J]. Jpn Dent Sci Rev, 2022, 58: 233-248.
26 Yao YT, Jia XS, Chen SM, et al. Extensive cell see-ding densities adaptable SF/PGA electrospinning scaffolds for bone tissue engineering[J]. Biomater Adv, 2022, 137: 212834.
27 Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, et al. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold[J]. Front Bioeng Biotechnol, 2022, 10: 975431.
28 Song HL, Zhang YT, Zhang ZH, et al. Hydroxyapatite/NELL-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application[J]. Int J Nanomedicine, 2021, 16: 4321-4332.
29 Zhu YW, Zhou JP, Dai BY, et al. A bilayer membrane doped with struvite nanowires for guided bone regeneration[J]. Adv Healthc Mater, 2022, 11(18): e2201679.
30 Ren LL, Gong P, Gao XH, et al. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation[J]. J Mater Chem B, 2022, 10(48): 10128-10138.
31 Xing DL, Zuo W, Chen JH, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37380-37395.
32 He Y, Tian M, Li XL, et al. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive functions for enhanced alveolar bone regeneration[J]. Adv Healthc Mater, 2022, 11(3): e2102236.
33 Ho MH, Huang KY, Tu CC, et al. Functionally gra-ded membrane deposited with PDLLA nanofibers encapsulating doxycycline and enamel matrix deri-vatives-loaded chitosan nanospheres for alveolar ridge regeneration[J]. Int J Biol Macromol, 2022, 203: 333-341.
34 Chen YF, Zhang CY, Zhang SY, et al. Novel advan-ces in strategies and applications of artificial articular cartilage[J]. Front Bioeng Biotechnol, 2022, 10: 987999.
35 Gan ZQ, Zhao YF, Wu YK, et al. Three-dimensio-nal, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration[J]. Acta Biomater, 2022, 147: 221-234.
36 de Souza Araújo IJ, Ferreira JA, Daghrery A, et al. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration[J]. Dent Mater, 2022, 38(11): 1749-1762.
37 Liu CZ, Hao ZC, Yang T, et al. Anti-acid biomime-tic dentine remineralization using inorganic silica stabilized nanoparticles distributed electronspun nanofibrous mats[J]. Int J Nanomedicine, 2021, 16: 8251-8264.
38 Pidhatika B, Widyaya VT, Nalam PC, et al. Surface modifications of high-performance polymer polyetheretherketone (PEEK) to improve its biological performance in dentistry[J]. Polymers (Basel), 2022, 14(24): 5526.
39 Amiri P, Talebi Z, Semnani D, et al. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers[J]. J Mater Sci Mater Med, 2021, 32(7): 82.
40 Peres BU, Manso AP, Carvalho LD, et al. Experimental composites of polyacrilonitrile-electrospun nanofibers containing nanocrystal cellulose[J]. Dent Mater, 2019, 35(11): e286-e297.
41 Ribeiro JS, Münchow EA, Bordini EAF, et al. Engineering of injectable antibiotic-laden fibrous mi-croparticles gelatin methacryloyl hydrogel for en-dodontic infection ablation[J]. Int J Mol Sci, 2022, 23(2): 971.
42 Terranova L, Louvrier A, Hébraud A, et al. Highly structured 3D electrospun conical scaffold: a tool for dental pulp regeneration[J]. ACS Biomater Sci Eng, 2021, 7(12): 5775-5787.
43 Leite ML, de Oliveira Ribeiro RA, Soares DG, et al. Poly(caprolactone)‑aligned nanofibers associated with fibronectin-loaded collagen hydrogel as a potent bioactive scaffold for cell-free regenerative en-dodontics[J]. Int Endod J, 2022, 55(12): 1359-1371.
44 Leite ML, Soares DG, Anovazzi G, et al. Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(9): 1244-1258.
45 Liu ZQ, Shang LL, Ge SH. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling[J]. J Dent Sci, 2021, 16(3): 937-947.
46 Zhao P, Chen W, Feng ZB, et al. Electrospun nanofibers for periodontal treatment: a recent progress[J]. Int J Nanomedicine, 2022, 17: 4137-4162.
47 Xu XW, Zhou Y, Zheng K, et al. 3D polycaprolactone/gelatin-oriented electrospun scaffolds promote periodontal regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(41): 46145-46160.
48 Abdalla HB, Marchioro RR, Galvão KEA, et al. Polycaprolactone scaffolds as a biomaterial for cementoblast delivery: an in vitro study[J]. J Periodontal Res, 2022, 57(5): 1014-1023.
49 Zarubova J, Hasani-Sadrabadi MM, Dashtimogha-dam E, et al. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration[J]. Adv Healthc Mater, 2022, 11(12): e2102593.
50 Ferreira JA, Kantorski KZ, Dubey N, et al. Persona-lized and defect-specific antibiotic-laden scaffolds for periodontal infection ablation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49642-49657.
51 He Z, Liu SB, Li ZM, et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models[J]. Mater Today Bio, 2022, 16: 100438.
52 Shahi RG, Albuquerque MP, Münchow EA, et al. Novel bioactive tetracycline-containing electrospun polymer fibers as a potential antibacterial dental implant coating[J]. Odontology, 2017, 105(3): 354-363.
53 Mathur A, Kharbanda OP, Koul V, et al. Fabrication and evaluation of antimicrobial biomimetic nanofiber coating for improved dental implant bioseal: an in vitro study[J]. J Periodontol, 2022, 93(10): 1578-1588.
54 Cochis A, Ferraris S, Sorrentino R, et al. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing[J]. J Mater Chem B, 2017, 5(42): 8366-8377.
55 Chowdhury MA, Hossain N, Shahid MA, et al. Development of SiC-TiO2-Graphene neem extracted antimicrobial nano membrane for enhancement of multiphysical properties and future prospect in dental implant applications[J]. Heliyon, 2022, 8(9): e10603.
56 Chen ZJ, Lv JC, Wang ZG, et al. Polycaprolactone electrospun nanofiber membrane with sustained chlorohexidine release capability against oral pathogens[J]. J Funct Biomater, 2022, 13(4): 280.
57 Andrei V, Fiț NI, Matei I, et al. In vitro antimicrobial effect of novel electrospun polylactic acid/hydroxyapatite nanofibres loaded with doxycycline[J]. Materials (Basel), 2022, 15(18): 6225.
58 Zhou YQ, Wang ML, Yan C, et al. Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers[J]. Biomolecules, 2022, 12(9): 1254.
59 Edmans JG, Ollington B, Colley HE, et al. Electrospun patch delivery of anti-TNFα F(ab) for the treatment of inflammatory oral mucosal disease[J]. J Control Release, 2022, 350: 146-157.
60 Teno J, Pardo-Figuerez M, Figueroa-Lopez KJ, et al. Development of multilayer ciprofloxacin hydrochloride electrospun patches for buccal drug deli-very[J]. J Funct Biomater, 2022, 13(4): 170.
61 Li C, Wang DD, Zhou Y, et al. Antifungal activity of camelus-derived LFA-LFC chimeric peptide gelatin film and effect on oral bacterial biofilm[J]. Appl Biochem Biotechnol, 2023, 195(5): 2993-3010.
62 Clitherow KH, Binaljadm TM, Hansen J, et al. Medium-chain fatty acids released from polymeric electrospun patches inhibit Candida albicans growth and reduce the biofilm viability[J]. ACS Biomater Sci Eng, 2020, 6(7): 4087-4095.
63 Nam S, Lee SY, Cho HJ. Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma[J]. J Colloid Interface Sci, 2017, 508: 112-120.
64 Longo R, Raimondo M, Vertuccio L, et al. Bottom-up strategy to forecast the drug location and release kinetics in antitumoral electrospun drug delivery systems[J]. Int J Mol Sci, 2023, 24(2): 1507.
65 Nam S, Lee JJ, Lee SY, et al. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy[J]. Int J Pharm, 2017, 526(1/2): 225-234.
66 Ravichandran S, Radhakrishnan J. Anticancer efficacy of lupeol incorporated electrospun Polycaprolactone/gelatin nanocomposite nanofibrous mats[J]. Nanotechnology, 2022, 33(29). doi: 10.1088/1361-6528/ac667b .
doi: 10.1088/1361-6528/ac667b
67 Ravichandran S, Jegathaprathaban R, Radhakrishnan J, et al. An investigation of electrospun Clerodendrum phlomidis leaves extract infused polycaprolactone nanofiber for in vitro biological application[J]. Bioinorg Chem Appl, 2022, 2022: 2335443.
68 Liu YN, Xu YJ, Zhang XP, et al. On-demand release of fucoidan from a multilayered nanofiber patch for the killing of oral squamous cancer cells and promotion of epithelial regeneration[J]. J Funct Biomater, 2022, 13(4): 167.
[1] 赵南洋,吴娟娟,周洲,陈欣月,张旭彤,徐逸飞,戴泰鸣. 贵州省实施儿童口腔疾病综合干预项目地区与非干预地区12岁儿童口腔健康状况调查分析[J]. 国际口腔医学杂志, 2025, 52(4): 484-489.
[2] 张睿,郝婷,吕闻,任双双,刘玉,吴文蕾,孙卫斌. 载黄连素的同轴静电纺丝膜对牙周致病菌及生物膜的抑菌性研究[J]. 国际口腔医学杂志, 2024, 51(5): 596-607.
[3] 毛鸿晨,王铮,杨德琴. 牙龈卟啉单胞菌外膜囊泡在口腔疾病中的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 608-615.
[4] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[5] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[6] 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328.
[7] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[8] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[9] 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18.
[10] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[11] 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295.
[12] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[13] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[14] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[15] 陈静,葛子瑜,俞婷婷,章燕珍. 帕金森病与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 218-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .