国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 317-323.doi: 10.7518/gjkq.2022048
Luo Xiao(),Cai Shengqing,Shi Bing,Li Chenghao.()
摘要: 探究2,3,7,8-四氯二苯二噁英(TCDD)诱导的腭裂模型中对中嵴上皮细胞影响的机制。 E12.5孕鼠随机分为对照组和实验组,实验组孕鼠胃饲质量浓度为4 μg·mL-1的TCDD;对照组孕鼠胃饲蓖麻油。于E18.5在体视显微镜下检测各组腭发育情况;分别在E13.5、E14.5、E15.5取胎鼠腭部组织行苏木精-伊红(HE)染色和免疫组织化学染色,观察小鼠腭部形态和蛋白酶活化受体/非典型蛋白激酶C(PAR/aPKC)复合物、β-连环蛋白的表达情况;用逆转录聚合酶链反应(RT-PCR)定量检测mRNA表达;Western blot定量检测PAR/aPKC复合物。 TCDD组胎鼠在E18.5全部发生腭裂,对照组未见腭裂产生。RT-PCR定量检测,PAR/aPKC复合体mRNA在E13.5表达最强,E14.5、E15.5的表达减弱。β-连环蛋白在E14.5表达最强,E13.5次之,E15.5表达最弱;E13.5、E14.5 TCDD组β-连环蛋白的表达明显低于对照组,E15.5高于对照组(P<0.01)。Western blot检测,PAR/aPKC复合体的表达随着腭发育而降低。免疫组织化学染色显示β-连环蛋白在对照组E13.5、E14.5腭中嵴上皮细胞内呈强阳性表达。 TCDD有可能通过干扰PAR/aPKC复合体协同β-连环蛋白参与诱导小鼠腭上皮融合异常,而导致腭裂。
中图分类号:
1 | Yoshioka W, Tohyama C. Mechanisms of developmental toxicity of dioxins and related compounds[J]. Int J Mol Sci, 2019, 20(3): E617. |
2 | 何晓梦, 刘翠苹, 蒲亚兰, 等. 以形态与组织学为基础筛选诱导胎鼠腭裂的四氯二苯二噁英最适剂量[J]. 卫生研究, 2013, 42(2): 277-281. |
He XM, Liu CP, Pu YL, et al. Be based on the morphological and histological changes to study optimal dose of TCDD induced cleft palate in mice embryo[J]. J Hyg Res, 2013, 42(2): 277-281. | |
3 | Sakuma C, Imura H, Yamada T, et al. Cleft palate formation after palatal fusion occurs due to the rupture of epithelial basement membranes[J]. J Craniomaxillofac Surg, 2018, 46(12): 2027-2031. |
4 | Piroli ME, Blanchette JO, Jabbarzadeh E. Polarity as a physiological modulator of cell function[J]. Front Biosci (Landmark Ed), 2019, 24: 451-462. |
5 | Ma L, Shi B, Zheng Q. Cell polarity and Par complex likely to be involved in dexamethasone-induced cleft palate[J]. J Craniofac Surg, 2018, 29(2): 260-263. |
6 | Vorhagen S, Niessen CM. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate[J]. Exp Cell Res, 2014, 328(2): 296-302. |
7 | 李承浩, 何苇, 蒙田, 等. 二恶英干扰腭中嵴上皮极性及叶酸拮抗作用的动物实验[J]. 中华口腔医学杂志, 2014, 49(12): 719-723. |
Li CH, He W, Meng T, et al. Tetrachlorodibenzo-p-dioxin-induced cleft palate because of partial loss of cell polarity to interfere with apoptosis during early developmental stage[J]. Chin J Stomatol, 2014, 49(12): 719-723. | |
8 | Lang CF, Munro E. The Par proteins: from molecular circuits to dynamic self-stabilizing cell polarity[J]. Development, 2017, 144(19): 3405-3416. |
9 | Nakajima A, Shuler CF, Gulka AOD, et al. TGF-β signaling and the epithelial-mesenchymal transition during palatal fusion[J]. Int J Mol Sci, 2018, 19(11): E3638. |
10 | He FL, Chen YP. Wnt signaling in lip and palate development[J]. Front Oral Biol, 2012, 16: 81-90. |
11 | He FL, Xiong W, Wang Y, et al. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion thr-ough regulation of Tgfβ3 expression[J]. Dev Biol, 2011, 350(2): 511-519. |
12 | Zhang H, Yao YG, Chen Y, et al. Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos[J]. Toxicology, 2016, 355-356: 31-38. |
13 | Lu SJ, He W, Shi B, et al. A preliminary study on the teratogenesis of dexamethasone and the preventive effect of vitamin B12 on murine embryonic palatal shelf fusion in vitro[J]. J Zhejiang Univ Sci B, 2008, 9(4): 306-312. |
14 | Vinot S, Le T, Ohno S, et al. Asymmetric distribution of Par proteins in the mouse embryo begins at the 8-cell stage during compaction[J]. Dev Biol, 2005, 282(2): 307-319. |
15 | De Vries WN, Evsikov AV, Haac BE, et al. Maternal β-catenin and E-cadherin in mouse development[J]. Development, 2004, 131(18): 4435-4445. |
16 | Gao Z, Bu YJ, Liu XZ, et al. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling[J]. Toxicol Appl Pharmacol, 2016, 298: 48-55. |
17 | Bhattacharya S. Cell polarity: a link to epithelial-mesenchymal transition and vascular mimicry[J]. Crit Rev Eukaryot Gene Expr, 2018, 28(2): 101-105. |
18 | Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin[J]. EMBO J, 2012, 31(12): 2714-2736. |
19 | Basu S, Cheriyamundath S, Ben-Ze’ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis[J]. F1000 Res, 2018, 7: 1488. |
20 | Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease[J]. Int J Mol Sci, 2014, 15(10): 17852-17885. |
[1] | 毛奇蓉,尹恒,李精韬. 边缘性腭咽闭合不全临床诊疗研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 116-124. |
[2] | 夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 632-638. |
[3] | 万雪丽,石永乐,张秀芬,王欢,田莉. 唇腭裂患儿全身麻醉苏醒期躁动多维干预体系的构建研究[J]. 国际口腔医学杂志, 2023, 50(3): 272-278. |
[4] | 陈卓,石冰,李精韬. 唇腭裂患者外鼻生长特征的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 279-286. |
[5] | 石佳鑫,王淳艺,李精韬. Pierre Robin序列征患者腭裂临床治疗的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 237-242. |
[6] | 张宇宁,曾妮,张焙,石冰,郑谦. 咽后壁瓣咽成形术对腭裂术后患者颌面部生长影响的初步研究[J]. 国际口腔医学杂志, 2023, 50(1): 66-71. |
[7] | 裴玲,曾妮,杨超,何苗,罗强,石冰,郑谦. 辅助局部麻醉对唇腭裂整复术后镇痛效果的研究[J]. 国际口腔医学杂志, 2022, 49(6): 657-662. |
[8] | 黄艺璇,石冰,李精韬. 唇腭裂患者鼻通气功能的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 453-461. |
[9] | 张琦,范存晖,杨茜,李然,徐晓琳,丁玮,王文惠,杨彩秀. 替牙期骨性Ⅲ类单侧完全性唇腭裂与非唇腭裂患者牙弓形态的对比研究[J]. 国际口腔医学杂志, 2022, 49(2): 144-152. |
[10] | 吴敏,李承浩,李扬,龚彩霞,石冰. 腭裂裂隙宽度与Sommerlad-Furlow法修复腭裂术后腭瘘发生率的关联研究[J]. 国际口腔医学杂志, 2021, 48(6): 640-643. |
[11] | 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724. |
[12] | 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519. |
[13] | 尹恒. 黏膜下腭裂的语音评估与治疗建议[J]. 国际口腔医学杂志, 2021, 48(3): 259-262. |
[14] | 艾皮孜古丽·亚库普,亚尔肯·阿吉,吴言辉,路利丹,许辉. 腭裂术后患者发音时表情扭曲与构音的关系研究[J]. 国际口腔医学杂志, 2021, 48(3): 263-268. |
[15] | 吴敏,石冰. 唇腭裂婴儿母乳喂养的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 269-273. |
|